Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Pharmacol ; 75(12): 1569-1580, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37862582

RESUMEN

OBJECTIVES: This study addresses the bioavailability challenges associated with oral nicotinamide mononucleotide (NMN) administration by introducing an innovative NMN formulation incorporated with hydroxyapatite (NMN-HAP). METHODS: The NMN-HAP was developed using a wet chemical precipitation and physical adsorption method. To assess its superiority over conventional free NMN, we examined NMN, nicotinamide adenine dinucleotide (NAD+), and nicotinamide riboside (NR) levels in mouse plasma and tissues following oral administration of NMN-HAP. KEY FINDINGS: NMN-HAP nanoparticles demonstrated a rod-shaped morphology, with an average size of ~50 nm, along with encapsulation efficiency and drug loading capacity exceeding 40%. In vitro, drug release results indicated that NMN-HAP exhibited significantly lower release compared with free NMN. In vivo studies showed that NMN-HAP extended circulation time, improved bioavailability compared with free NMN, and elevated plasma levels of NMN, NAD+, and NR. Moreover, NMN-HAP administration displayed tissue-specific distribution with a substantial accumulation of NMN, NAD+, and NR in the brain and liver. CONCLUSION: NMN-HAP represents an ideal formulation for enhancing NMN bioavailability, enabling tissue-specific delivery, and ultimately elevating in vivo NAD+ levels. Considering HAP's biocompatible nature and versatile characteristics, we anticipate that this system has significant potential for various future applications.


Asunto(s)
NAD , Mononucleótido de Nicotinamida , Ratones , Animales , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Disponibilidad Biológica , Encéfalo/metabolismo , Hidroxiapatitas
2.
Artículo en Inglés | MEDLINE | ID: mdl-36342908

RESUMEN

Background and Objectives: As a natural analog of cannabidiol (CBD), nonpsychoactive cannabidivarin (CBDV) has therapeutic potential. However, the precise metabolism of CBDV either in vivo or in vitro has not been fully understood. Objective and Experimental Approach: Therefore, mice were intragastrically administered CBDV, and metabolite-rich and potential target organs and tissues were collected and analyzed by ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The metabolic pathways of CBDV in mice were illustrated more comprehensively for the first time. Results: Twenty-one metabolites were found, all of which, except decarbonylated CBDV, were initially identified. Compared with CBD, the newly identified metabolic pathways were single dehydrogenation, combined decarbonylation and monohydroxylation, and glutathione conjugations of CBDV and its phase I metabolite. Conclusions: According to the very low response in plasma and the extremely high response in intestinal contents 1 h later after the administration, it was assumed that the oral bioavailability of CBDV was as poor as that of CBD, and the major forms to excrete were conjugates of glutathione and glucuronic acid. In contrast to CBDV, decarbonylated CBDV in the keto form and enol form had considerable responses in plasma and preferred to target fatty tissues and organs owing to their higher lipophilicity. Whether these forms can function as genuine active substances in vivo instead of CBDV is worthy of investigation. These results and supposes contribute notable information regarding the pharmacokinetics and pharmacodynamics of CBDV.

3.
Pharmacol Res Perspect ; 10(4): e00986, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35844164

RESUMEN

Decreased Nicotinamide adenine dinucleotide (NAD+ ) level has received increasing attention in recent years since it plays a critical role in many diseases and aging. Although some research has proved that supplementing nicotinamide mononucleotide (NMN) could improve the level of NAD+ , it is still uncertain whether the NAD+ level in specific tissues could be improved in combination with other nutrients. So far, a variety of nutritional supplements have flooded the market, which contains the compositions of NMN coupled with natural products. However, the synergy and transformation process of NMN has not been fully elucidated. In this study, oral administration of NMN (500 mg/kg) combined with resveratrol (50 mg/kg) or ginsenoside Rh2&Rg3 (50 mg/kg) was used to validate the efficacy of appropriate drug combinations in mice. Compared with NMN alone, NMN combined with resveratrol could increase the levels of NAD+ in the heart and muscle by about 1.6 times and 1.7 times, respectively, whereas NMN coupled with ginsenoside Rh2&Rg3 could effectively improve the level of NAD+ in lung tissue for approximately 2.0 times. Our study may provide new treatment ideas for aging or diseases in cardiopulmonary caused by decreased NAD+ levels.


Asunto(s)
Ginsenósidos , Mononucleótido de Nicotinamida , Animales , Biotransformación , Ginsenósidos/farmacología , Ratones , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Mononucleótido de Nicotinamida/farmacología , Resveratrol
4.
Food Chem ; 393: 133383, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35671663

RESUMEN

Platycodon grandiflorus is a well-known edible and medicinal plant that has been developed for dietary supplements or functional foods to relieve pulmonary disorders. Platycosides are the main active constituents of P. grandiflorus with multiple pharmacological activities. However, their metabolic fates after dietary consumption are still unclear. Herein, 25 deglycosylated metabolites of platycosides were identified, most of which were identified in vivo for the first time. Notably, 3-O-ß-d-glucopyranosyl platycosides could be absorbed into the bloodstream, and their structures were unambiguously characterized with the aid of chemically prepared standards, including two new compounds (M3 and M11). These findings reveal that both intestinal bacterial metabolism and hydrolysis of ester linkage at C-28 by carboxylesterases in liver are the possible in vivo deglycosylation metabolism pathway of platycosides. This study greatly facilitated our understanding of the fate of the platycosides after dietary consumption of P. grandiflorus products.


Asunto(s)
Platycodon , Saponinas , Administración Oral , Bacterias/metabolismo , Biotransformación , Platycodon/química , Saponinas/química
5.
J Virol ; 96(6): e0214121, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35044216

RESUMEN

Due to the high mutation rate of influenza virus and the rapid increase of drug resistance, it is imperative to discover host-targeting antiviral agents with broad-spectrum antiviral activity. Considering the discrepancy between the urgent demand of antiviral drugs during an influenza pandemic and the long-term process of drug discovery and development, it is feasible to explore host-based antiviral agents and strategies from antiviral drugs on the market. In the current study, the antiviral mechanism of arbidol (ARB), a broad-spectrum antiviral drug with potent activity at early stages of viral replication, was investigated from the aspect of hemagglutinin (HA) receptors of host cells. N-glycans that act as the potential binding receptors of HA on 16-human bronchial epithelial (16-HBE) cells were comprehensively profiled for the first time by using an in-depth glycomic approach based on TiO2-PGC chip-Q-TOF MS. Their relative levels upon the treatment of ARB and virus were carefully examined by employing an ultra-high sensitive qualitative method based on Chip LC-QQQ MS, showing that ARB treatment led to significant and extensive decrease of sialic acid (SA)-linked N-glycans (SA receptors), and thereby impaired the virus utilization on SA receptors for rolling and entry. The SA-decreasing effect of ARB was demonstrated to result from its inhibitory effect on sialyltransferases (ST), ST3GAL4 and ST6GAL1 of 16-HBE cells. Silence of STs, natural ST inhibitors, as well as sialidase treatment of 16-HBE cells, resulted in similar potent antiviral activity, whereas ST-inducing agent led to the diminished antiviral effect of ARB. These observations collectively suggesting the involvement of ST inhibition in the antiviral effect of ARB. IMPORTANCE This study revealed, for the first time, that ST inhibition and the resulted destruction of SA receptors of host cells may be an underlying mechanism for the antiviral activity of ARB. ST inhibition has been proposed as a novel host-targeting antiviral approach recently and several compounds are currently under exploration. ARB is the first antiviral drug on the market that was found to possess ST inhibiting function. This will provide crucial evidence for the clinical usages of ARB, such as in combination with neuraminidase (NA) inhibitors to exert optimized antiviral effect, etc. More importantly, as an agent that can inhibit the expression of STs, ARB can serve as a novel lead compound for the discovery and development of host-targeting antiviral drugs.


Asunto(s)
Indoles , Sialiltransferasas , Sulfuros , Antivirales/farmacología , Antivirales/uso terapéutico , Línea Celular , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Células Epiteliales , Glicómica , Hemaglutininas , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Neuraminidasa/farmacología , Polisacáridos/metabolismo , Sialiltransferasas/antagonistas & inhibidores , Sulfuros/farmacología , Sulfuros/uso terapéutico
6.
J AOAC Int ; 103(4): 1148-1159, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33241331

RESUMEN

BACKGROUND: Ophiopogonis radix and Liriopes radix are well known for the treatment of dry coughs and phthisis. Liriopes radix is occasionally used as a substitute for Ophiopogonis radix in various prescriptions due to the extremely similar pharmacological activities and clinical efficacies, but they are regarded as two different remedies in the Chinese Pharmacopoeia. Accordingly, the establishment of a reliable analytical approach for the discrimination and quality evaluation of Ophiopogonis and Liriopes is required. OBJECTIVE: To establish a simple, accurate, and reliable method that can simultaneously determine multiple components in Ophiopogonis radix and Liriopes radix. To comprehensively compare the chemical compositions of the two herbs and find markers for discrimination and quality assessments. METHOD: An HPLC-ESI-triple quadrupole (QQQ)-MS/MS method was developed for simultaneous characterization and quantification of chemical components in the two herbs. The results were further analyzed by PLS discriminant analysis to provide more information about the chemical differences, as well as to evaluate the quality of each sample. RESULTS: A total of 23 compounds have been characterized and quantified in 31 batches of herbs from different geographical regions, among which liriopesides B, sprengerinin A, ophiopogonin B, and ophiopogonanone E contribute mostly. The contents of homoisoflavonoids were much higher in Ophiopogonis radix than in Liriopes radix, but the levels of steroidal saponins followed a contrary trend. CONCLUSIONS: Simultaneous determination of multiple components by HPLC-QQQ-MS/MS coupled with chemometrics analysis is an acceptable strategy to evaluate and control the quality of Ophiopogonis radix and Liriope radix. HIGHLIGHTS: Simultaneous determination of 12 steroidal saponins and 11 homoisoflavonoids in both Ophiopogonis radix and Liriope radix by using HPLC-QQQ-MS/MS in positive ion mode, as well as the quality control study.


Asunto(s)
Medicamentos Herbarios Chinos , Ophiopogon , Cromatografía Líquida de Alta Presión , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
7.
Anal Chim Acta ; 1139: 79-87, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33190712

RESUMEN

Targeted proteomics has advantages over earlier conventional technologies for protein detection. We developed and validated an LC/MRM-MS-based targeted proteomic method combined with immunoaffinity precipitation for the enrichment and detection of low abundance chemerin isoforms in human biofluids. After tryptic digestion, each chemerin isoform was characterized by isoform-specific peptides, and the absolute quantification was achieved by using stable isotope-labeled peptides as internal standards. In serum, follicular fluid and synovial fluid, a total of 6 chemerin isoforms were identified and quantified, among which a novel natural isoform 153Q was discovered for the first time. The relative content of the six chemerin isoforms in human serum was 157S ≫ 156F ≫ 158K > 154F ≥ 155A > 153Q in the ratio of 25:17:5:2.5:2.2:1, respectively. The absolute contents were in the range of 88-3.5 ng/mL. This distribution remained consistent among the 3 biofluids analyzed. Total chemerin were found to be increased in both polycystic ovary syndrome (serum and follicular fluid) and rheumatoid arthritis (serum) patients. However, chemerin isoform analysis revealed that only 156F & 157S were increased in the former, while 155A, 156F & 157S were increased in the latter. This demonstrates the potential of this method in detailed characterization of changes in chemerin isoforms that may be of clinical relevance.


Asunto(s)
Isótopos , Proteómica , Quimiocinas , Cromatografía Liquida , Femenino , Humanos , Espectrometría de Masas , Isoformas de Proteínas
8.
J Proteome Res ; 19(4): 1470-1480, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32129075

RESUMEN

Due to its relatively small size, homology to humans, and susceptibility to human viruses, the tree shrew becomes an ideal alternative animal model for the study of human viral infectious diseases. However, there is still no report for the comprehensive glycan profile of the respiratory tract tissues in tree shrews. In this study, we characterized the structural diversity of N-glycans in the respiratory tract of tree shrews using our well-established TiO2-PGC chip-Q-TOF-MS method. As a result, a total of 219 N-glycans were identified. Moreover, each identified N-glycan was quantitated by a high sensitivity and accurate MRM method, in which 13C-labeled internal standards were used to correct the inherent run-to-run variation in MS detection. Our results showed that the N-glycan composition in the turbinate and lung was significantly different from the soft palate, trachea, and bronchus. Meanwhile, 28 high-level N-glycans in turbinate were speculated to be correlated with the infection of H1N1 virus A/California/04/2009. This study is the first to reveal the comprehensive glycomic profile of the respiratory tract of tree shrews. Our results also help to better understand the role of glycan receptors in human influenza infection and pathogenesis.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Tupaiidae , Animales , Glicómica , Humanos , Espectrometría de Masas , Polisacáridos , Titanio
9.
Chem Phys Lipids ; 225: 104813, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31442411

RESUMEN

Gangliosides (GAs) and sulfatides (STs) are major acidic glycosphingolipids (GSLs) that are particularly abundant in the central nervous system and associated with substantial neurodegenerative diseases. In this study, we developed an improved approach for the comprehensive profiling of GAs and STs in rat brain tissues by adopting a pre-fractionation step before the LC-MS analysis. The pre-fractionation step allows the efficient enrichment of different types of acidic GSLs and the removal of high-abundance interferences, thereby greatly enhanced the detection sensitivity and accuracy of low-abundance acidic GSLs. By using this improved approach, a total of 340 acidic GSLs (from 281 compositions) were characterized in rat brain tissues, including 277 GAs (from 230 compositions) and 63 STs (from 51 compositions), among which 57 GAs and 14 STs were novel acidic GSLs that have not been reported previously. This study represented the most comprehensive profiling of acidic GSLs in rat brain tissues. The result of this study greatly enlarged our understanding of the structural diversity of natural acidic GSLs, and provided important chemical information for the exploration of biological function of acidic GSLs in the central nervous system.


Asunto(s)
Encéfalo/citología , Gangliósidos/química , Sulfoglicoesfingolípidos/química , Animales , Cromatografía Líquida de Alta Presión , Femenino , Gangliósidos/aislamiento & purificación , Masculino , Espectrometría de Masas , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Sulfoglicoesfingolípidos/aislamiento & purificación , Propiedades de Superficie
10.
BMC Cancer ; 18(1): 799, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089463

RESUMEN

BACKGROUND: Resistance to chemotherapy drugs (e.g. taxol) has been a major obstacle in successful cancer treatment. In A549 human lung adenocarcinoma, acquired resistance to the first-line chemotherapy taxol has been a critical problem in clinics. Sphingolipid (SPL) controls various aspects of cell growth, survival, adhesion, and motility in cancer, and has been gradually regarded as a key factor in drug resistance. To better understand the taxol-resistant mechanism, a comprehensive sphingolipidomic approach was carried out to investigate the sphingolipid metabolism in taxol-resistant strain of A549 cell (A549T). METHODS: A549 and A549T cells were extracted according to the procedure with optimal condition for SPLs. Sphingolipidomic analysis was carried out by using an UHPLC coupled with quadrupole time-of-flight (Q-TOF) MS system for qualitative profiling and an UHPLC coupled with triple quadrupole (QQQ) MS system for quantitative analysis. The differentially expressed sphingolipids between taxol-sensitive and -resistant cells were explored by using multivariate analysis. RESULTS: Based on accurate mass and characteristic fragment ions, 114 SPLs, including 4 new species, were clearly identified. Under the multiple reaction monitoring (MRM) mode of QQQ MS, 75 SPLs were further quantified in both A549 and A549T. Multivariate analysis explored that the levels of 57 sphingolipids significantly altered in A549T comparing to those of A549 (p < 0.001 and VIP > 1), including 35 sphingomyelins (SMs), 14 ceramides (Cers), 3 hexosylceramides (HexCers), 4 lactosylceramides (LacCers) and 1 sphingosine. A significant decrease of SM and Cer levels and overall increase of HexCer and LacCer represent the major SPL metabolic characteristic in A549T. CONCLUSIONS: This study investigated sphingolipid profiles in human lung adenocarcinoma cell lines, which is the most comprehensive sphingolipidomic analysis of A549 and A549T. To some extent, the mechanism of taxol-resistance could be attributed to the aberrant sphingolipid metabolism, "inhibition of the de novo synthesis pathway" and "activation of glycosphingolipid pathway" may play the dominant role for taxol-resistance in A549T. This study provides insights into the strategy for clinical diagnosis and treatment of taxol resistant lung cancer.


Asunto(s)
Células A549 , Resistencia a Antineoplásicos , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacología , Esfingolípidos , Células A549/química , Células A549/efectos de los fármacos , Células A549/metabolismo , Cromatografía Liquida , Biología Computacional , Humanos , Espectrometría de Masas , Análisis de Componente Principal , Esfingolípidos/análisis , Esfingolípidos/química , Esfingolípidos/metabolismo
12.
Nat Commun ; 8(1): 631, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28931878

RESUMEN

N-linked glycans on immunoglobulin G (IgG) have been associated with pathogenesis of diseases and the therapeutic functions of antibody-based drugs; however, low-abundance species are difficult to detect. Here we show a glycomic approach to detect these species on human IgGs using a specialized microfluidic chip. We discover 20 sulfated and 4 acetylated N-glycans on IgGs. Using multiple reaction monitoring method, we precisely quantify these previously undetected low-abundance, trace and even ultra-trace N-glycans. From 277 patients with rheumatoid arthritis (RA) and 141 healthy individuals, we also identify N-glycan biomarkers for the classification of both rheumatoid factor (RF)-positive and negative RA patients, as well as anti-citrullinated protein antibodies (ACPA)-positive and negative RA patients. This approach may identify N-glycosylation-associated biomarkers for other autoimmune and infectious diseases and lead to the exploration of promising glycoforms for antibody therapeutics.Post-translational modifications can affect antibody function in health and disease, but identification of all variants is difficult using existing technologies. Here the authors develop a microfluidic method to identify and quantify low-abundance IgG N-glycans and show some of these IgGs can be used as biomarkers for rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide/metabolismo , Inmunoglobulina G/metabolismo , Polisacáridos/metabolismo , Sulfatos/metabolismo , Acetilación , Adulto , Anciano , Artritis Reumatoide/inmunología , Biomarcadores/metabolismo , Estudios de Casos y Controles , Femenino , Glicosilación , Humanos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Péptidos Cíclicos/inmunología , Polisacáridos/inmunología , Procesamiento Proteico-Postraduccional , Factor Reumatoide/inmunología , Sulfatos/inmunología
13.
Sci Rep ; 6: 34684, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27703266

RESUMEN

Drug resistance elicited by cancer cells continue to cause huge problems world-wide, for example, tens of thousands of patients are suffering from taxol-resistant human ovarian cancer. However, its biochemical mechanisms remain unclear. Sphingolipid metabolic dysregulation has been increasingly regarded as one of the drug-resistant mechanisms for various cancers, which in turn provides potential targets for overcoming the resistance. In the current study, a well-established LC-MS based sphingolipidomic approach was applied to investigate the sphingolipid metabolism of A2780 and taxol-resistant A2780 (A2780T) human ovarian cancer cell lines. 102 sphingolipids (SPLs) were identified based on accurate mass and characteristic fragment ions, among which 12 species have not been reported previously. 89 were further quantitatively analyzed by using multiple reaction monitoring technique. Multivariate analysis revealed that the levels of 52 sphingolipids significantly altered in A2780T cells comparing to those of A2780 cells. These alterations revealed an overall increase of sphingomyelin levels and significant decrease of ceramides, hexosylceramides and lactosylceramides, which concomitantly indicated a deviated SPL metabolism in A2780T. This is the most comprehensive sphingolipidomic analysis of A2780 and A2780T, which investigated significantly changed sphingolipid profile in taxol-resistant cancer cells. The aberrant sphingolipid metabolism in A2780T could be one of the mechanisms of taxol-resistance.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Ováricas/metabolismo , Esfingolípidos/análisis , Línea Celular Tumoral , Cromatografía Liquida/métodos , Femenino , Humanos , Paclitaxel/farmacología , Espectrometría de Masas en Tándem/métodos
14.
Artículo en Inglés | MEDLINE | ID: mdl-26809375

RESUMEN

This study describes the characterization of oxygenated metabolites of ginsenoside Rg1 in rat urine and plasma. These in vivo metabolites were profiled by using UHPLC-QTOF MS-based method. On the basis of high-resolution MS/MS data, and comparison with chemically synthesized authentic compounds, nine oxygenated metabolites of Rg1 were characterized as vinaginsenosides 21 and 22 (M1 and M2), vinaginsenoside R15 (M3), 6-O-(ß-d-glucopyranosyl)-20-O-(ß-d-glucopyranosyl) 3ß, 6α, 12ß, 20(S)-tetrahydroxy-24ξ-hydroxydammar-25-ene (M4 and M5), floralginsenoside A (M7 and M8), floralginsenoside B (M9) and epoxyginsenoside Rg1 (M13), respectively. Among these metabolites, M4, M5 and M13 are new ginsenosides and others were detected as in vivo metabolites of Rg1 for the first time. In addition, a series of oxygenated metabolites of Rh1 and deglycosylated metabolite of Rg1, were observed and characterized by comparing with compounds synthesized by us, which revealed an association between C-20 configuration and the extent of oxidation metabolism. Appearance of all these metabolites in blood stream and urine after i.v. dosing and oral administration of Rg1 was further examined, which clearly showed that mono-oxygenated metabolites of Rg1 were major circulating metabolites at the early stage after dosing. Characterization of exact chemical structures of these circulating metabolites contribute greatly to our understanding of chemical exposure after consumption of ginseng products, and provide valuable information for explaining multiple bioactivities of ginseng products.


Asunto(s)
Ginsenósidos/metabolismo , Oxígeno/química , Animales , Ginsenósidos/sangre , Ginsenósidos/orina , Masculino , Ratas , Ratas Sprague-Dawley
15.
J Agric Food Chem ; 63(10): 2689-700, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25737370

RESUMEN

Oxygenated metabolites have been suggested as the major circulating metabolites of ginsenosides. In the current study, 10 oxygenated metabolites of ginsenoside Rb1 in plasma and urine of rat following iv dose were characterized by comparison with chemically synthesized authentic compounds as quinquenoside L16 (M1 and M2), notoginsenoside A (M3), ginsenoside V (M4 and M7), epoxyginsenoside Rb1 (M5 and M9), notoginsenoside K (M6), and notoginsenoside C (M8 and M10), 9 of which were detected as in vivo metabolites for the first time. After oral administration of ginsenoside Rb1, M3, M4, and M7 were observed as major circulating metabolites and presented in the bloodstream of rat for 24 h. Characterization of the exact chemical structures of these circulating metabolites could contribute greatly to our understanding of chemical exposure of ginsenosides after consumption of ginseng products and provide valuable information for explaining multiple bioactivities of ginseng products.


Asunto(s)
Ginsenósidos/sangre , Ginsenósidos/orina , Panax/metabolismo , Extractos Vegetales/sangre , Extractos Vegetales/orina , Animales , Cromatografía Líquida de Alta Presión , Ginsenósidos/química , Masculino , Espectrometría de Masas , Estructura Molecular , Panax/química , Panax/clasificación , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...