Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Drug Discov Today ; 29(6): 104018, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723763

RESUMEN

Text summarization is crucial in scientific research, drug discovery and development, regulatory review, and more. This task demands domain expertise, language proficiency, semantic prowess, and conceptual skill. The recent advent of large language models (LLMs), such as ChatGPT, offers unprecedented opportunities to automate this process. We compared ChatGPT-generated summaries with those produced by human experts using FDA drug labeling documents. The labeling contains summaries of key labeling sections, making them an ideal human benchmark to evaluate ChatGPT's summarization capabilities. Analyzing >14000 summaries, we observed that ChatGPT-generated summaries closely resembled those generated by human experts. Importantly, ChatGPT exhibited even greater similarity when summarizing drug safety information. These findings highlight ChatGPT's potential to accelerate work in critical areas, including drug safety.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38619534

RESUMEN

In the rapidly evolving field of artificial intelligence (AI), explainability has been traditionally assessed in a post-modeling process and is often subjective. In contrary, many quantitative metrics have been routinely used to assess a model's performance. We proposed a unified formular named PERForm, by incorporating explainability as a weight into the existing statistical metrics to provide an integrated and quantitative measure of both predictivity and explainability to guide model selection, application, and evaluation. PERForm was designed as a generic formula and can be applied to any data types. We applied PERForm on a range of diverse datasets, including DILIst, Tox21, and three MAQC-II benchmark datasets, using various modeling algorithms to predict a total of 73 distinct endpoints. For example, AdaBoost algorithms exhibited superior performance (PERForm AUC for AdaBoost is 0.129 where Linear regression is 0) in DILIst prediction, where linear regression outperformed other models in the majority of Tox21 endpoints (PERForm AUC for linear regression is 0.301 where AdaBoost is 0.283 in average). This research marks a significant step toward comprehensively evaluating the utility of an AI model to advance transparency and interpretability, where the tradeoff between a model's performance and its interpretability can have profound implications.

3.
Sci Rep ; 14(1): 8165, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589653

RESUMEN

Accurately calling indels with next-generation sequencing (NGS) data is critical for clinical application. The precisionFDA team collaborated with the U.S. Food and Drug Administration's (FDA's) National Center for Toxicological Research (NCTR) and successfully completed the NCTR Indel Calling from Oncopanel Sequencing Data Challenge, to evaluate the performance of indel calling pipelines. Top performers were selected based on precision, recall, and F1-score. The performance of many other pipelines was close to the top performers, which produced a top cluster of performers. The performance was significantly higher in high confidence regions and coding regions, and significantly lower in low complexity regions. Oncopanel capture and other issues may have occurred that affected the recall rate. Indels with higher variant allele frequency (VAF) may generally be called with higher confidence. Many of the indel calling pipelines had good performance. Some of them performed generally well across all three oncopanels, while others were better for a specific oncopanel. The performance of indel calling can further be improved by restricting the calls within high confidence intervals (HCIs) and coding regions, and by excluding low complexity regions (LCR) regions. Certain VAF cut-offs could be applied according to the applications.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL , Polimorfismo de Nucleótido Simple
4.
Regul Toxicol Pharmacol ; 149: 105613, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570021

RESUMEN

Regulatory agencies consistently deal with extensive document reviews, ranging from product submissions to both internal and external communications. Large Language Models (LLMs) like ChatGPT can be invaluable tools for these tasks, however present several challenges, particularly the proprietary information, combining customized function with specific review needs, and transparency and explainability of the model's output. Hence, a localized and customized solution is imperative. To tackle these challenges, we formulated a framework named askFDALabel on FDA drug labeling documents that is a crucial resource in the FDA drug review process. AskFDALabel operates within a secure IT environment and comprises two key modules: a semantic search and a Q&A/text-generation module. The Module S built on word embeddings to enable comprehensive semantic queries within labeling documents. The Module T utilizes a tuned LLM to generate responses based on references from Module S. As the result, our framework enabled small LLMs to perform comparably to ChatGPT with as a computationally inexpensive solution for regulatory application. To conclude, through AskFDALabel, we have showcased a pathway that harnesses LLMs to support agency operations within a secure environment, offering tailored functions for the needs of regulatory research.


Asunto(s)
Etiquetado de Medicamentos , United States Food and Drug Administration , Etiquetado de Medicamentos/normas , Etiquetado de Medicamentos/legislación & jurisprudencia , United States Food and Drug Administration/normas , Estados Unidos , Humanos
5.
Drug Discov Today ; 29(4): 103938, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432353

RESUMEN

Drug-induced renal injury (DIRI) causes >1.5 million adverse events annually in the USA alone. Although standard biomarkers exist for DIRI, they lack the sensitivity or specificity to detect nephrotoxicity before the significant loss of renal function. In this study, we describe the creation of DIRIL - a list of drugs associated with DIRI and nephrotoxicity - from two literature datasets with DIRI annotation, confirmed using FDA drug labeling. DIRIL comprises 317 orally administered drugs covering all 14 anatomical, therapeutic and chemical (ATC) classification categories. Of the 317 drugs, 171 were DIRI-positive and 146 were DIRI-negative. DIRIL will be a relevant and invaluable resource for discovery of new approach methods (NAMs) to predict the occurrence and possible severity of DIRI earlier in drug development.


Asunto(s)
Lesión Renal Aguda , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Riñón , Lesión Renal Aguda/inducido químicamente , Biomarcadores
7.
Clin Pharmacol Ther ; 115(4): 687-697, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38018360

RESUMEN

Artificial intelligence (AI) is increasingly being used in decision making across various industries, including the public health arena. Bias in any decision-making process can significantly skew outcomes, and AI systems have been shown to exhibit biases at times. The potential for AI systems to perpetuate and even amplify biases is a growing concern. Bias, as used in this paper, refers to the tendency toward a particular characteristic or behavior, and thus, a biased AI system is one that shows biased associations entities. In this literature review, we examine the current state of research on AI bias, including its sources, as well as the methods for measuring, benchmarking, and mitigating it. We also examine the biases and methods of mitigation specifically relevant to the healthcare field and offer a perspective on bias measurement and mitigation in regulatory science decision making.


Asunto(s)
Inteligencia Artificial , Benchmarking , Humanos , Sesgo , Salud Pública
8.
Exp Biol Med (Maywood) ; 248(21): 1908-1917, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38084745

RESUMEN

Causality assessment is vital in patient safety and pharmacovigilance (PSPV) for safety signal detection, adverse reaction management, and regulatory submission. Large language models (LLMs), especially those designed with transformer architecture, are revolutionizing various fields, including PSPV. While attempts to utilize Bidirectional Encoder Representations from Transformers (BERT)-like LLMs for causal inference in PSPV are underway, a detailed evaluation of "fit-for-purpose" BERT-like model selection to enhance causal inference performance within PSPV applications remains absent. This study conducts an in-depth exploration of BERT-like LLMs, including generic pre-trained BERT LLMs, domain-specific pre-trained LLMs, and domain-specific pre-trained LLMs with safety knowledge-specific fine-tuning, for causal inference in PSPV. Our investigation centers around (1) the influence of data complexity and model architecture, (2) the correlation between the BERT size and its impact, and (3) the role of domain-specific training and fine-tuning on three publicly accessible PSPV data sets. The findings suggest that (1) BERT-like LLMs deliver consistent predictive power across varied data complexity levels, (2) the predictive performance and causal inference results do not directly correspond to the BERT-like model size, and (3) domain-specific pre-trained LLMs, with or without safety knowledge-specific fine-tuning, surpass generic pre-trained BERT models in causal inference. The findings are valuable to guide the future application of LLMs in a broad range of application.


Asunto(s)
Seguridad del Paciente , Farmacovigilancia , Humanos , Lenguaje
9.
Exp Biol Med (Maywood) ; 248(21): 1944-1951, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38158803

RESUMEN

The opioid epidemic has become a serious national crisis in the United States. An indepth systematic analysis of opioid-related adverse events (AEs) can clarify the risks presented by opioid exposure, as well as the individual risk profiles of specific opioid drugs and the potential relationships among the opioids. In this study, 92 opioids were identified from the list of all Food and Drug Administration (FDA)-approved drugs, annotated by RxNorm and were classified into 13 opioid groups: buprenorphine, codeine, dihydrocodeine, fentanyl, hydrocodone, hydromorphone, meperidine, methadone, morphine, oxycodone, oxymorphone, tapentadol, and tramadol. A total of 14,970,399 AE reports were retrieved and downloaded from the FDA Adverse Events Reporting System (FAERS) from 2004, Quarter 1 to 2020, Quarter 3. After data processing, Empirical Bayes Geometric Mean (EBGM) was then applied which identified 3317 pairs of potential risk signals within the 13 opioid groups. Based on these potential safety signals, a comparative analysis was pursued to provide a global overview of opioid-related AEs for all 13 groups of FDA-approved prescription opioids. The top 10 most reported AEs for each opioid class were then presented. Both network analysis and hierarchical clustering analysis were conducted to further explore the relationship between opioids. Results from the network analysis revealed a close association among fentanyl, oxycodone, hydrocodone, and hydromorphone, which shared more than 22 AEs. In addition, much less commonly reported AEs were shared among dihydrocodeine, meperidine, oxymorphone, and tapentadol. On the contrary, the hierarchical clustering analysis further categorized the 13 opioid classes into two groups by comparing the full profiles of presence/absence of AEs. The results of network analysis and hierarchical clustering analysis were not only consistent and cross-validated each other but also provided a better and deeper understanding of the associations and relationships between the 13 opioid groups with respect to their adverse effect profiles.


Asunto(s)
Analgésicos Opioides , Oxicodona , Analgésicos Opioides/efectos adversos , Teorema de Bayes , Minería de Datos , Fentanilo , Hidrocodona , Hidromorfona , Meperidina , Oximorfona , Tapentadol , Estados Unidos/epidemiología
10.
Bioinformatics ; 39(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995287

RESUMEN

MOTIVATION: Antibiotic resistance presents a formidable global challenge to public health and the environment. While considerable endeavors have been dedicated to identify antibiotic resistance genes (ARGs) for assessing the threat of antibiotic resistance, recent extensive investigations using metagenomic and metatranscriptomic approaches have unveiled a noteworthy concern. A significant fraction of proteins defies annotation through conventional sequence similarity-based methods, an issue that extends to ARGs, potentially leading to their under-recognition due to dissimilarities at the sequence level. RESULTS: Herein, we proposed an Artificial Intelligence-powered ARG identification framework using a pretrained large protein language model, enabling ARG identification and resistance category classification simultaneously. The proposed PLM-ARG was developed based on the most comprehensive ARG and related resistance category information (>28K ARGs and associated 29 resistance categories), yielding Matthew's correlation coefficients (MCCs) of 0.983 ± 0.001 by using a 5-fold cross-validation strategy. Furthermore, the PLM-ARG model was verified using an independent validation set and achieved an MCC of 0.838, outperforming other publicly available ARG prediction tools with an improvement range of 51.8%-107.9%. Moreover, the utility of the proposed PLM-ARG model was demonstrated by annotating resistance in the UniProt database and evaluating the impact of ARGs on the Earth's environmental microbiota. AVAILABILITY AND IMPLEMENTATION: PLM-ARG is available for academic purposes at https://github.com/Junwu302/PLM-ARG, and a user-friendly webserver (http://www.unimd.org/PLM-ARG) is also provided.


Asunto(s)
Antibacterianos , Inteligencia Artificial , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Metagenoma
11.
Genome Biol ; 24(1): 270, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012772

RESUMEN

BACKGROUND: Genomic DNA reference materials are widely recognized as essential for ensuring data quality in omics research. However, relying solely on reference datasets to evaluate the accuracy of variant calling results is incomplete, as they are limited to benchmark regions. Therefore, it is important to develop DNA reference materials that enable the assessment of variant detection performance across the entire genome. RESULTS: We established a DNA reference material suite from four immortalized cell lines derived from a family of parents and monozygotic twins. Comprehensive reference datasets of 4.2 million small variants and 15,000 structural variants were integrated and certified for evaluating the reliability of germline variant calls inside the benchmark regions. Importantly, the genetic built-in-truth of the Quartet family design enables estimation of the precision of variant calls outside the benchmark regions. Using the Quartet reference materials along with study samples, batch effects are objectively monitored and alleviated by training a machine learning model with the Quartet reference datasets to remove potential artifact calls. Moreover, the matched RNA and protein reference materials and datasets from the Quartet project enables cross-omics validation of variant calls from multiomics data. CONCLUSIONS: The Quartet DNA reference materials and reference datasets provide a unique resource for objectively assessing the quality of germline variant calls throughout the whole-genome regions and improving the reliability of large-scale genomic profiling.


Asunto(s)
Benchmarking , Genoma Humano , Humanos , Reproducibilidad de los Resultados , Polimorfismo de Nucleótido Simple , Células Germinativas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
12.
Nat Commun ; 14(1): 7141, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932302

RESUMEN

Animal studies are unavoidable in evaluating chemical and drug safety. Generative Adversarial Networks (GANs) can generate synthetic animal data by learning from the legacy animal study results, thus may serve as an alternative approach to assess untested chemicals. AnimalGAN, a GAN method to simulate 38 rat clinical pathology measures, was developed with significant robustness even for the drugs that vary significantly from these used during training, both in terms of chemical structure, drug class, and the year of FDA approval. AnimalGAN showed comparable results in hepatotoxicity assessment as using the real animal data and outperformed 12 conventional quantitative structure-activity relationship approaches. Using AnimalGAN, a virtual experiment of 100,000 rats ranked hepatotoxicity of three structurally similar drugs in a similar trend that has been observed in human population. AnimalGAN represented a significant step with artificial intelligence towards the global effort in replacement, reduction, and refinement (3Rs) of animal use.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Patología Clínica , Humanos , Animales , Ratas , Inteligencia Artificial , Animales de Laboratorio , Relación Estructura-Actividad Cuantitativa
14.
Genome Biol ; 24(1): 245, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884999

RESUMEN

The Quartet Data Portal facilitates community access to well-characterized reference materials, reference datasets, and related resources established based on a family of four individuals with identical twins from the Quartet Project. Users can request DNA, RNA, protein, and metabolite reference materials, as well as datasets generated across omics, platforms, labs, protocols, and batches. Reproducible analysis tools allow for objective performance assessment of user-submitted data, while interactive visualization tools support rapid exploration of reference datasets. A closed-loop "distribution-collection-evaluation-integration" workflow enables updates and integration of community-contributed multiomics data. Ultimately, this portal helps promote the advancement of reference datasets and multiomics quality control.


Asunto(s)
Multiómica , Programas Informáticos , Humanos , Control de Calidad
15.
Nat Biotechnol ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679545

RESUMEN

Certified RNA reference materials are indispensable for assessing the reliability of RNA sequencing to detect intrinsically small biological differences in clinical settings, such as molecular subtyping of diseases. As part of the Quartet Project for quality control and data integration of multi-omics profiling, we established four RNA reference materials derived from immortalized B-lymphoblastoid cell lines from four members of a monozygotic twin family. Additionally, we constructed ratio-based transcriptome-wide reference datasets between two samples, providing cross-platform and cross-laboratory 'ground truth'. Investigation of the intrinsically subtle biological differences among the Quartet samples enables sensitive assessment of cross-batch integration of transcriptomic measurements at the ratio level. The Quartet RNA reference materials, combined with the ratio-based reference datasets, can serve as unique resources for assessing and improving the quality of transcriptomic data in clinical and biological settings.

16.
Drug Discov Today ; 28(11): 103770, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37714406

RESUMEN

Drug-induced cardiotoxicity (DICT) is a leading cause of drug trial failure and discontinuation. Current drug annotations for cardiotoxicity largely focus on individual outcomes or mechanisms. Considering the broad spectrum of adverse cardiac events, we developed Drug-Induced Cardiotoxicity Rank (DICTrank) using FDA labeling and comprehensively classified 1318 human drugs into four categories: Most-DICT-Concern (n = 341), Less-DICT-Concern (n = 528), No-DICT-Concern (n = 343), and Ambiguous-DICT-Concern (n = 106). Notably, DICTrank covers diverse therapeutic categories, of which several were enriched with Most-DICT-Concern drugs, such as antineoplastic agents, sex hormones, anti-inflammatory drugs, beta-blockers, and cardiac therapy. DICTrank currently presents the largest drug list of DICT annotation, and it could contribute to the development of new approach methods, including AI models for early identification of DICT risk during drug development and beyond.


Asunto(s)
Antineoplásicos , Cardiotoxicidad , Humanos , Antineoplásicos/toxicidad , Cardiotoxicidad/etiología
17.
Genome Biol ; 24(1): 201, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37674217

RESUMEN

BACKGROUND: Batch effects are notoriously common technical variations in multiomics data and may result in misleading outcomes if uncorrected or over-corrected. A plethora of batch-effect correction algorithms are proposed to facilitate data integration. However, their respective advantages and limitations are not adequately assessed in terms of omics types, the performance metrics, and the application scenarios. RESULTS: As part of the Quartet Project for quality control and data integration of multiomics profiling, we comprehensively assess the performance of seven batch effect correction algorithms based on different performance metrics of clinical relevance, i.e., the accuracy of identifying differentially expressed features, the robustness of predictive models, and the ability of accurately clustering cross-batch samples into their own donors. The ratio-based method, i.e., by scaling absolute feature values of study samples relative to those of concurrently profiled reference material(s), is found to be much more effective and broadly applicable than others, especially when batch effects are completely confounded with biological factors of study interests. We further provide practical guidelines for implementing the ratio based approach in increasingly large-scale multiomics studies. CONCLUSIONS: Multiomics measurements are prone to batch effects, which can be effectively corrected using ratio-based scaling of the multiomics data. Our study lays the foundation for eliminating batch effects at a ratio scale.


Asunto(s)
Algoritmos , Multiómica , Composición de Base , Benchmarking , Relevancia Clínica
19.
Regul Toxicol Pharmacol ; 144: 105486, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37633327

RESUMEN

The Ames assay is required by the regulatory agencies worldwide to assess the mutagenic potential risk of consumer products. As well as this in vitro assay, in silico approaches have been widely used to predict Ames test results as outlined in the International Council for Harmonization (ICH) guidelines. Building on this in silico approach, here we describe DeepAmes, a high performance and robust model developed with a novel deep learning (DL) approach for potential utility in regulatory science. DeepAmes was developed with a large and consistent Ames dataset (>10,000 compounds) and was compared with other five standard Machine Learning (ML) methods. Using a test set of 1,543 compounds, DeepAmes was the best performer in predicting the outcome of Ames assay. In addition, DeepAmes yielded the best and most stable performance up to when compounds were >30% outside of the applicability domain (AD). Regarding the potential for regulatory application, a revised version of DeepAmes with a much-improved sensitivity of 0.87 from 0.47. In conclusion, DeepAmes provides a DL-powered Ames test predictive model for predicting the results of Ames tests; with its defined AD and clear context of use, DeepAmes has potential for utility in regulatory application.


Asunto(s)
Aprendizaje Profundo , Mutágenos/toxicidad , Mutagénesis , Pruebas de Mutagenicidad/métodos
20.
Chem Res Toxicol ; 36(8): 1321-1331, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37540590

RESUMEN

The pathology of animal studies is crucial for toxicity evaluations and regulatory assessments, but the manual examination of slides by pathologists remains time-consuming and requires extensive training. One inherent challenge in this process is the interobserver variability, which can compromise the consistency and accuracy of a study. Artificial intelligence (AI) has demonstrated its ability to automate similar examinations in clinical applications with enhanced efficiency, consistency, and accuracy. However, training AI models typically relies on costly pixel-level annotation of injured regions and is often not available for animal pathology. To address this, we developed the PathologAI system, a "weakly" supervised approach for WSI classification in rat images without explicit lesion annotation at the pixel level. Using rat liver imaging data from the Open TG-GATEs system, PathologAI was applied to predict necrosis of n = 816 WSIs (377 controls). TG-GATEs studied 170 compounds at three dose levels (low, middle, and high) for four time points (3, 7, 14, and 28 days). PathologAI first preprocessed WSIs at the tile level to generate a high-level representation with a Generative Adversarial Network architecture. The prediction of liver necrosis relied on an ensemble model of 5 CNN classifiers trained on 335 WSIs. The ensemble model achieved notable classification accuracy on the holdout test set: 87% among 87 control slides free of findings, 83% among 120 controls with spontaneous necrosis, 67% among 147 treated animals with spontaneous minimal or slight necrosis, and 59% among 127 treated animals with minimal or slight necrosis caused by the treatment. Importantly, PathologAI was able to discriminate WSIs with spontaneous necrosis from those with treatment related necrosis and discriminated mild lesion level findings (slight vs minimal) and between treatment dose levels. PathologAI could provide an inexpensive and rapid screening tool to assist the digital pathology analysis in preclinical applications and general toxicological studies.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Animales , Ratas , Necrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...