Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39202427

RESUMEN

DNA methylation plays an important role in the development and tissue differentiation of eukaryotes. In this study, bisulfite sequencing (BS-seq) technology was used to analyze the DNA methylation profiles of liver tissues taken from Rongchang pigs at three postnatal feeding stages, including newborn, suckling, and adult. The DNA methylation pattern across the genomes or genic region showed little difference between the three stages. We observed 419 differentially methylated regions (DMRs) in promoters, corresponding to 323 genes between newborn and suckling stages, in addition to 288 DMRs, corresponding to 134 genes, between suckling and adult stages and 351 DMRs, corresponding to 293 genes, between newborn and adult stages. These genes with DMRs were mainly enriched in metabolic, immune-related functional processes. Correlation analysis showed that the methylation level of gene promoters was significantly negatively correlated with gene expression. Further, we found that genes related to nutritional metabolism, e.g., carbohydrate metabolism (FAHD1 and GUSB) or fatty acid metabolism (LPIN1 and ACOX2), lost DNA methylation in their promoter, with mRNA expression increased in newborn pigs compared with those in the suckling stage. A few fatty acid metabolism-related genes (SLC27A5, ACOX2) were hypomethylated and highly expressed in the newborn stage, which might satisfy the nutritional requirements of Rongchang pigs with high neonatal birth rates. In the adult stage, HMGCS2-which is related to fatty acid ß-oxidation-was hypomethylated and highly expressed, which explains that the characteristics of high energy utilization in adult Rongchang pigs and their immune-related genes (CD68, STAT2) may be related to the establishment of liver immunity. This study provides a comprehensive analysis of genome-wide DNA methylation patterns in pig liver postnatal development and growth. Our findings will serve as a valuable resource in hepatic metabolic studies and the agricultural food industry.


Asunto(s)
Metilación de ADN , Hígado , Regiones Promotoras Genéticas , Animales , Hígado/metabolismo , Hígado/crecimiento & desarrollo , Porcinos/crecimiento & desarrollo , Porcinos/genética , Animales Recién Nacidos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Epigénesis Genética
2.
Sci Rep ; 14(1): 16093, 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997312

RESUMEN

Adipose tissue plays critical roles in an individual's aging process. In this research, we use single-nucleus RNA sequencing to create highly detailed transcriptional maps of subcutaneous adipose tissue and visceral adipose tissue in young and aged mice. We comprehensively identify the various cell types within the white adipose tissue of mice, our study has elucidated seven distinct cell types within this tissue. Further analyses focus on adipocytes, fibro-adipogenic progenitors, and immune cells, revealing age-related declines in the synthetic metabolic activity of adipocytes, diminished immune regulation, and reduced maturation or proliferation of fibroblasts in undifferentiated adipocytes. We confirm the presence of distinct subpopulations of adipocytes, highlighting decreases in adipogenesis subgroups due to aging. Additionally, we uncover a reduction in immune cell subpopulations, driven by age-associated immune system dysregulation. Furthermore, pseudo-time analyses indicate that Adipocyte1 represents the 'nascent' phase of adipocyte development, while Adipocyte2 represents the 'mature' phase. We use cell-cell interaction to explore the age-dependent complexities of the interactions between FAPs and adipocytes, and observed increased expression of the inflammation-related Retn-Tlr4 interaction in older mice, while the anti-inflammatory Angpt1-Tek interaction was only detected in young mice. These transcriptional profiles serve as a valuable resource for understanding the functional genomics underlying metabolic disorders associated with aging in human adipose tissue.


Asunto(s)
Adipocitos , Envejecimiento , Perfilación de la Expresión Génica , Animales , Envejecimiento/genética , Ratones , Adipocitos/metabolismo , Transcriptoma , Adipogénesis/genética , Tejido Adiposo/metabolismo , Grasa Intraabdominal/metabolismo , Masculino , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo , Análisis de la Célula Individual
3.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069122

RESUMEN

Long non-coding RNAs (lncRNAs) have been extensively studied, and their crucial roles in adipogenesis, lipid metabolism, and gene expression have been revealed. However, the exact regulatory or other mechanisms by which lncRNAs influence the functioning of mesenteric adipose tissue (MAT) remain largely unknown. In this paper, we report the identification of a new lncRNA, named G8110, from the MAT of Bama pigs. The coordinated expression levels of lncRNA G8110 and NFE2L1 were significantly decreased in the MAT of obese Bama pigs compared with those in the MAT of lean pigs. Using a bone mesenchymal stem cell adipogenic differentiation model, we found that lncRNA G8110 played a role in adipocyte differentiation by positively regulating NFE2L1. We also found that lncRNA G8110 inhibited the formation of intracellular lipid synthesis, promoted lipid metabolism, and inhibited the expression of inflammatory cytokines. Our findings regarding lipid synthesis may further promote the role of lncRNAs in driving adipose tissue remodeling and maintaining metabolic health.


Asunto(s)
Adipogénesis , ARN Largo no Codificante , Animales , Porcinos , Adipogénesis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Adipocitos/metabolismo , Diferenciación Celular/genética , Lípidos
4.
Gene ; 888: 147753, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37659599

RESUMEN

Sympathetic innervation of white adipose tissue (WAT) plays a key role in the regulation of lipid metabolism. Sympathetic activation promotes release of norepinephrine (NE), which binds to adrenergic receptors on adipocytes, promoting adipocyte lipolysis and enhanced oxidative metabolism. However, the mechanism by which sympathetic nerves regulate lipid metabolism in pig adipose tissue remains unclear. We used NE to simulate the process of sympathetic driving in pig adipocytes. RNA sequencing (RNA-seq) was used to determine the gene expression profile of pig adipocytes responding to NE stimulation. Our data suggests that the lipolytic signaling pathway is activated in pig adipocytes upon acute stimulation of NE, resulting in enhanced lipid metabolism and lipolysis, consistent with the phenomena found in humans and mice. Specifically, differentially expressed protein coding genes (PCGs) (SIRT4, SLC27A1) are mainly associated with functions that inhibit fatty acid oxidation and promote lipid synthesis. Similarly, we investigated the changes in regulatory transcripts such as long non-coding RNAs (lncRNAs) and transcripts of uncertain coding potential (TUCP) in response to NE and found that differentially expressed lncRNAs (lncG47338, lncG30660, lncG29516, lncG3790) and TUCP (TUCP_G38001) were co-expressed with target genes related to the promotion of fatty acid ß-oxidation, lipolysis and oxidative metabolism, thus acting as regulators. These results indicate a broad suite of gene expression alterations in response to NE stimulation and promote the understanding of the molecular mechanisms by which NE regulates lipid metabolism in pigs.


Asunto(s)
Lipólisis , ARN Largo no Codificante , Ratones , Humanos , Animales , Porcinos , Lipólisis/genética , Norepinefrina/farmacología , Norepinefrina/metabolismo , ARN Largo no Codificante/metabolismo , Adipocitos/metabolismo , Perfilación de la Expresión Génica , Ácidos Grasos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA