Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 41(24): 5263-5273, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33972399

RESUMEN

Most neuroimaging experiments that investigate how tools and their actions are represented in the brain use visual paradigms where tools or hands are displayed as 2D images and no real movements are performed. These studies discovered selective visual responses in occipitotemporal and parietal cortices for viewing pictures of hands or tools, which are assumed to reflect action processing, but this has rarely been directly investigated. Here, we examined the responses of independently visually defined category-selective brain areas when participants grasped 3D tools (N = 20; 9 females). Using real-action fMRI and multivoxel pattern analysis, we found that grasp typicality representations (i.e., whether a tool is grasped appropriately for use) were decodable from hand-selective areas in occipitotemporal and parietal cortices, but not from tool-, object-, or body-selective areas, even if partially overlapping. Importantly, these effects were exclusive for actions with tools, but not for biomechanically matched actions with control nontools. In addition, grasp typicality decoding was significantly higher in hand than tool-selective parietal regions. Notably, grasp typicality representations were automatically evoked even when there was no requirement for tool use and participants were naive to object category (tool vs nontools). Finding a specificity for typical tool grasping in hand-selective, rather than tool-selective, regions challenges the long-standing assumption that activation for viewing tool images reflects sensorimotor processing linked to tool manipulation. Instead, our results show that typicality representations for tool grasping are automatically evoked in visual regions specialized for representing the human hand, the primary tool of the brain for interacting with the world.


Asunto(s)
Mapeo Encefálico/métodos , Mano/fisiología , Imagenología Tridimensional/métodos , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Encéfalo/fisiología , Femenino , Fuerza de la Mano/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
2.
J Neuropsychol ; 13(2): 354-369, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29453783

RESUMEN

Spinal cord injury can cause cognitive impairments even when no cerebral lesion is appreciable. As patients are forced to explore the environment in a non-canonical position (i.e., seated on a wheelchair), a modified relation with space can explain motor-related cognitive differences compared to non-injured individuals. Peripersonal space is encoded in motor terms, that is, in relation to the representation of action abilities and is strictly related to the affordance of reachability. In turn, affordances, the action possibilities suggested by relevant properties of the environment, are related to the perceiver's peripersonal space and motor abilities. One might suppose that these motor-related cognitive abilities are compromised when an individual loses the ability to move. We shed light on this issue in 10 patients with paraplegia and 20 matched controls. All have been administered an affordances-related reachability judgement task adapted from Costantini, Ambrosini, Tieri, Sinigaglia, and Committeri (2010, Experimental Brain Research, 207, 95) and neuropsychological tests. Our findings demonstrate that patients and controls show the same level of accuracy in estimating the location of their peripersonal space boundaries, but only controls show the typical overestimation of reaching range. Secondly, patients show a higher variability in their judgements than controls. Importantly, this finding is related to the patients' ability to perform everyday tasks. Finally, patients are not faster in making their judgements on reachability in peripersonal space, while controls are. Our results suggest that not moving freely or as usual in the environment impact decoding of action-related properties even when the upper limbs are not compromised.


Asunto(s)
Traumatismos de la Médula Espinal/psicología , Adulto , Cognición , Ambiente , Femenino , Humanos , Juicio , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Paraplejía/psicología , Espacio Personal , Desempeño Psicomotor , Tiempo de Reacción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...