Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Ther Med ; 19(2): 1511-1521, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32010332

RESUMEN

Aged garlic extract (AGE) has been demonstrated to have therapeutic properties in tumors; however its mechanisms of action have not yet been fully elucidated. A previous study revealed that AGE exerts an anti-proliferative effect on a panel of both sensitive [wild-type (WT)] and multidrug-resistant (MDR) human cancer cells. Following treatment of the cells with AGE, cytofluorimetric analysis revealed the occurrence of dose-dependent mitochondrial membrane depolarization (MMD). In this study, in order to further clarify the mechanisms of action of AGE, the effects of AGE on mitochondria isolated from rat liver mitochondria (RLM) were also examined. AGE induced an effect on the components of the electrochemical gradient (ΔµH +), mitochondrial membrane potential (ΔΨm) and mitochondrial electrochemical gradient (ΔpHm). The mitochondrial membrane dysfunctions of RLM induced by AGE, namely the decrease in both membrane potential and chemical gradient were associated with a higher oxidation of both the endogenous glutathione and pyridine nucleotide content. To confirm the anti-proliferative effects of AGE, experiments were performed on the human neuroblastoma (NB) cancer cells, SJ-N-KP and the MYCN-amplified IMR5 cells, using its derivative S-allyl-L-cysteine (SAC), with the aim of providing evidence of the anticancer activity of this compound and its possible molecular mechanism as regards the induction of cytotoxicity. Following treatment of the cells with SAC at 20 mM, cell viability was determined by MTT assay and apoptosis was detected by flow cytometry, using Annexin V-FITC labeling. The percentages of cells undergoing apoptosis was found to be 48.0% in the SJ-N-KP and 50.1% in the IMR5 cells. By cytofluorimetric analysis, it was suggested that the target of SAC are the mitochondria. Mitochondrial activity was examined by labeling the cells with the probe, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylimidacarbocyanine iodide (JC-1). Following treatment with SAC at 50 mM, both NB cell lines exhibited a marked increase in MMD. On the whole, the findings of this study indicate that both natural products, AGE and SAC, cause cytotoxicity to tumor cells via the induction of mitochondrial permeability transition (MPT).

2.
Amino Acids ; 52(2): 161-169, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31654209

RESUMEN

Agmatine (AGM) produces a dual effect on the mitochondrial permeability transition (MPT) mechanism in rat liver mitochondria: at low concentrations, it induces the phenomenon, at high ones, inhibits it. The prevention at high concentrations is evidenced by the significant inhibition of mitochondrial swelling induced by Ca2+ and phosphate; in this condition, AGM both prevents the release of Apoptosis Inducing Factor (AIF) and enhances the release of other pro-apoptotic factors, such as cytochrome c (cyt c) and Smac/DIABLO. As these factors are released without MPT induction, the involvement of mitochondrial outer membrane permeabilization (MOMP) could be hypothesized. Cyclosporin A (CsA), a powerful inhibitor of MPT, enhanced the AGM-mediated inhibition of swelling, and surprisingly, prevented the release of cyt c and Smac/DIABLO. In the presence of Ca2+, AGM also activated the Bcl-2 family protein Bax, a key factor in inducing MOMP, which is inactivated by CsA. Together with the voltage-dependent anion channel (VDAC), Bax forms channels in the outer membrane further supporting the involvement of MOMP in the release of pro-apoptotic factors. In view of the fact that VDAC was inactivated by ruthenium red, which in turn inhibited the release of cyt c, it can be hypothesized that, on the one hand, AGM inhibits MPT induction and, on the other, it selectively permeabilizes the outer membrane via MOMP induction.


Asunto(s)
Agmatina/metabolismo , Factor Inductor de la Apoptosis/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Apoptosis , Factor Inductor de la Apoptosis/genética , Calcio/metabolismo , Permeabilidad de la Membrana Celular , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Ratas
3.
Int J Mol Sci ; 20(8)2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-31014011

RESUMEN

Annona purpurea, known in Mexico as "cabeza de negro" or "ilama", belongs to the Annonaceae family. Its roots are employed in folk medicine in several regions of Mexico. Taking that information into account, a chemical and biological analysis of the components present in the roots of this species was proposed. Our results demonstrated that the dichloromethane (DCM) extract was exclusively constituted by a mixture of five new acetogenins named annopurpuricins A-E (1-5). These compounds have an aliphatic chain of 37 carbons with a terminal α,ß unsaturated γ-lactone. Compounds 1 and 2 belong to the adjacent bis-THF (tetrahydrofuran) α-monohydroxylated type, while compounds 3 and 4 belong to the adjacent bis-THF α,α'-dihydroxylated type; only compound 5 possesses a bis-epoxide system. Complete structure analysis was carried out by spectroscopy and chemical methods. All compounds were evaluated for their antiproliferative activity on three human tumor cell lines (MSTO-211H, HeLa and HepG2). Compounds 1-4 inhibited significantly the growth of HeLa and HepG2 cells, showing GI50 values in the low/subnanomolar range, while 5 was completely ineffective under the tested conditions. The investigation of the mechanism of action responsible for cytotoxicity revealed for the most interesting compound 1 the ability to block the complex I activity on isolated rat liver mitochondria (RLM).


Asunto(s)
Acetogeninas/química , Annona/química , Raíces de Plantas/química , Acetogeninas/aislamiento & purificación , Acetogeninas/farmacología , Animales , Annona/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Conformación Molecular , Raíces de Plantas/metabolismo , Ratas
4.
Int J Oncol ; 53(3): 1257-1268, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29956777

RESUMEN

Aged garlic extract (AGE) has been shown to possess therapeutic properties in cancer; however its mechanisms of action are unclear. In this study, we demonstrate by MTT assay that AGE exerts an anti-proliferative effect on a panel of both sensitive and multidrug-resistant (MDR) human cancer cell lines and enhances the effects of hyperthermia (42˚C) on M14 melanoma cells. The evaluation of the mitochondrial activity in whole cancer cells treated with AGE, performed by cytofluorimetric analysis in the presence of the lipophilic cationic fluorochrome JC-1, revealed the occurrence of dose-dependent mitochondrial membrane depolarization. Membrane potential was measured by the TPP+ selective electrode. In order to shed light on its mechanisms of action, the effects of AGE on isolated rat liver mitochondria were also examined. In this regard, AGE induced a mitochondrial membrane hyperpolarization of approximately 15 mV through a mechanism that was similar to that observed with the ionophores, nigericin or salinomycin, by activating an exchange between endogenous K+ with exogenous H+. The prolonged incubation of the mitochondria with AGE induced depolarization and matrix swelling, indicative of mitochondrial permeability transition induction that, however, occurs through a different mechanism from the well-known one. In particular, the transition pore opening induced by AGE was due to the rearrangement of the mitochondrial membranes following the increased activity of the K+/H+ exchanger. On the whole, the findings of this study indicate that AGE exerts cytotoxic effects on cancer cells by altering mitochondrial permeability. In particular, AGE in the mitochondria activates K+/H+ exchanger, causes oxidative stress and induces mitochondrial permeability transition (MPT).


Asunto(s)
Antioxidantes/farmacología , Ajo/química , Membranas Mitocondriales/efectos de los fármacos , Neoplasias/terapia , Extractos Vegetales/farmacología , Animales , Antioxidantes/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Terapia Combinada/métodos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Hipertermia Inducida/métodos , Ionóforos/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Membranas Mitocondriales/metabolismo , Neoplasias/patología , Estrés Oxidativo/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Antiportadores de Potasio-Hidrógeno/metabolismo , Ratas , Ratas Wistar
5.
Amino Acids ; 48(10): 2313-26, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27619911

RESUMEN

Mitochondria represent cell "powerhouses," being involved in energy transduction from the electrochemical gradient to ATP synthesis. The morphology of their cell types may change, according to various metabolic processes or osmotic pressure. A new morphology of the inner membrane and mitochondrial cristae, significantly different from the previous one, has been proposed for the inner membrane and mitochondrial cristae, based on the technique of electron tomography. Mitochondrial Ca(2+) transport (the transporter has been isolated) generates reactive oxygen species and induces the mitochondrial permeability transition of both inner and outer mitochondrial membranes, leading to induction of necrosis and apoptosis. In the mitochondria of several cell types (liver, kidney, and heart), mitochondrial oxidative stress is an essential step in the induction of cell death, although not in brain, in which the phenomenon is caused by a different mechanism. Mitochondrial permeability transition drives both apoptosis and necrosis, whereas mitochondrial outer membrane permeability is characteristic of apoptosis. Adenine nucleotide translocase remains the most important component involved in membrane permeability, with the opening of the transition pore, although other proteins, such as ATP synthase or phosphate carriers, have been proposed. Intrinsic cell death is triggered by the release from mitochondria of proteic factors, such as cytochrome c, apoptosis inducing factor, and Smac/DIABLO, with the activation of caspases upon mitochondrial permeability transition or mitochondrial outer membrane permeability induction. Mitochondrial permeability transition induces the permeability of the inner membrane in sites in contact with the outer membrane; mitochondrial outer membrane permeability forms channels on the outer membrane by means of various stimuli involving Bcl-2 family proteins. The biologically active amines, spermine, and agmatine, have specific functions on mitochondria which distinguish them from other amines. Enzymatic oxidative deamination of spermine by amine oxidases in tumor cells may produce reactive oxygen species, leading to transition pore opening and apoptosis. This process could be exploited as a new therapeutic strategy to combat cancer.


Asunto(s)
Apoptosis , Aminas Biogénicas/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Humanos , Necrosis , Especificidad de Órganos , Permeabilidad
6.
Amino Acids ; 48(10): 2327-37, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27255894

RESUMEN

Spermine, besides to be transported in mitochondria by an energy dependent electrophoretic mechanism, can be also released by two different mechanisms. The first one is induced in deenergizing conditions by FCCP or antimycin A and it is mediated by an electroneutral exchange spermine protons. The second one takes place in energizing conditions during the activity of the adenine nucleotide translocase and is mediated by an electroneutral symport mechanism involving the efflux in co-transport of spermine and phosphate and the exchange of exogenous ADP with endogenous ATP. The triggering of this mechanism permits an alternating cycling of spermine across the mitochondrial membrane, that is spermine is transported or released by energized mitochondria in the absence or presence of ATP synthesis, respectively. The physiological implications of this cycling of spermine are related to the induction or prevention of mitochondrial permeability transition and, consequently, on apoptosis or its prevention.


Asunto(s)
Apoptosis , Mitocondrias Hepáticas/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Espermina/metabolismo , Animales , Antimicina A/farmacología , Transporte Biológico Activo/efectos de los fármacos , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Masculino , Ratas , Ratas Wistar
7.
Amino Acids ; 47(5): 869-83, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25792113

RESUMEN

Mitochondria, once merely considered as the "powerhouse" of cells, as they generate more than 90 % of cellular ATP, are now known to play a central role in many metabolic processes, including oxidative stress and apoptosis. More than 40 known human diseases are the result of excessive production of reactive oxygen species (ROS), bioenergetic collapse and dysregulated apoptosis. Mitochondria are the main source of ROS in cells, due to the activity of the respiratory chain. In normal physiological conditions, ROS generation is limited by the anti-oxidant enzymatic systems in mitochondria. However, disregulation of the activity of these enzymes or interaction of respiratory complexes with mitochondriotropic agents may lead to a rise in ROS concentrations, resulting in oxidative stress, mitochondrial permeability transition (MPT) induction and triggering of the apoptotic pathway. ROS concentration is also increased by the activity of amine oxidases located inside and outside mitochondria, with oxidation of biogenic amines and polyamines. However, it should also be recalled that, depending on its concentration, the polyamine spermine can also protect against stress caused by ROS scavenging. In higher organisms, cell signaling pathways are the main regulators in energy production, since they act at the level of mitochondrial oxidative phosphorylation and participate in the induction of the MPT. Thus, respiratory complexes, ATP synthase and transition pore components are the targets of tyrosine kinases and phosphatases. Increased ROS may also regulate the tyrosine phosphorylation of target proteins by activating Src kinases or phosphatases, preventing or inducing a number of pathological states.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Poliaminas/metabolismo , Transducción de Señal , Tirosina/metabolismo , Apoptosis , Transporte de Electrón/genética , Regulación de la Expresión Génica , Humanos , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/patología , Poro de Transición de la Permeabilidad Mitocondrial , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Estrés Oxidativo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
8.
Free Radic Biol Med ; 81: 88-99, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25591967

RESUMEN

The uptake of spermine into mammalian mitochondria indicated the need to identify its catabolic pathway in these organelles. Bovine liver mitochondria were therefore purified and their capacity for natural polyamine uptake was verified. A kinetic approach was then used to determine the presence of an MDL 72527-sensitive enzyme with spermine oxidase activity in the matrix of bovine liver mitochondria. Western blot analysis of mitochondrial fractions and immunogold electron microscopy observations of purified mitochondria unequivocally confirmed the presence of a protein recognized by anti-spermine oxidase antibodies in the mitochondrial matrix. Preliminary kinetic characterization showed that spermine is the preferred substrate of this enzyme; lower activity was detected with spermidine and acetylated polyamines. Catalytic efficiency comparable to that of spermine was also found for 1-aminododecane. The considerable effect of ionic strength on the Vmax/KM ratio suggested the presence of more than one negatively charged zone inside the active site cavity of this mitochondrial enzyme, which is probably involved in the docking of positively charged substrates. These findings indicate that the bovine liver mitochondrial matrix contains an enzyme belonging to the spermine oxidase class. Because H2O2 is generated by spermine oxidase activity, the possible involvement of the latter as an important signaling transducer under both physiological and pathological conditions should be considered.


Asunto(s)
Hígado/enzimología , Mitocondrias Hepáticas/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Espermina/metabolismo , Animales , Dominio Catalítico , Bovinos , Peróxido de Hidrógeno/metabolismo , Cinética , Concentración Osmolar , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/aislamiento & purificación , Putrescina/análogos & derivados , Putrescina/química , Espermidina/metabolismo , Electricidad Estática , Especificidad por Sustrato , Poliamino Oxidasa
9.
Curr Pharm Des ; 20(2): 253-61, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23701541

RESUMEN

4ß-cinnamoyloxy,1ß,3α-dihydroxyeudesm-7,8-ene (CDE) extracted from Verbesina persicifolia induces bioenergetic collapse in rat liver mitochondria (RLM), monitored as a fall in the respiratory control index and ADP/O values. This fall in energy is accompanied by a protonophore effect and membrane potential (Δψ) collapse, demonstrating that CDE behaves as a typical uncoupling agent. However, when examining the effect of CDE in detail, we found that it acts as a "mild" uncoupler because it drops Δψ and increases respiratory state 4. The proposed mechanism is based on the interaction of CDE with membrane protein cytochrome C oxidase, which is implicated in proton permeability, and with the respiratory chain for the generation of reactive oxygen species which mediate and regulate the activity of the above membrane protein. Considering the energy collapse, "mild" uncoupling, and the fact that CDE is largely used in folk medicines, this extract may be viewed as a potentially effective anti-obesity drug and a natural lead compound for developing new natural uncouplers against obesity.


Asunto(s)
Fármacos Antiobesidad/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Sesquiterpenos de Eudesmano/farmacología , Verbesina/química , Animales , Fármacos Antiobesidad/aislamiento & purificación , Transporte de Electrón/efectos de los fármacos , Complejo IV de Transporte de Electrones/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos de Eudesmano/aislamiento & purificación , Desacopladores/aislamiento & purificación , Desacopladores/farmacología
10.
Curr Pharm Des ; 20(2): 223-44, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23701547

RESUMEN

Mitochondria are the cell powerhouses but also contain the mechanisms leading to cell death. Many signals converge on mitochondria to cause the permeabilization of mitochondrial membranes by the mitochondrial permeability transition (MPT) induction and the opening of transition pores (PTPs). These events cause loss of ionic homeostasis, matrix swelling, outer membrane rupture leading to pro-apoptotic factors release, and impairment of bioenergetics functions. The molecular mechanism underlying MPT induction is not completely elucidated however, a growing body of evidence supports the concept that pharmacological induction of PTPs in mitochondria of neoplastic cells is an effective and promising strategy for therapeutic approaches against cancer. The first part of this article presented as a review also evidences the main constituents of PTP and several compounds targeting them for inducing the phenomenon. The second part of the article regards the recent experimental development in the field, in particular, the effects of peniocerol (PEN), a sterol isolated from the root of Myrtillocactus geometrizans, at cellular and mitochondrial level. PEN exhibits a cytotoxic activity on some human tumor cell lines, whose mechanism is attributable to the oxidation of critical thiols located on adenine nucleotide translocase, the protein mainly involved in PTP. This event in the presence of Ca(2+) induces the MPT with the release of the pro-apoptotic factors cytochrome c and apoptosis inducing factor. These observations evidence that PEN may trigger both the caspase-dependent and caspaseindependent apoptotic pathways. This characteristic renders PEN a very interesting compound that could be developed to obtain more effective antiproliferative agents targeting mitochondria for anticancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Esteroles/farmacología , Animales , Apoptosis/efectos de los fármacos , Factor Inductor de la Apoptosis/metabolismo , Cactaceae/química , Caspasas/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Terapia Molecular Dirigida , Neoplasias/metabolismo , Esteroles/aislamiento & purificación
12.
Amino Acids ; 46(3): 671-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24043461

RESUMEN

The polyamine spermine is transported into the mitochondrial matrix by an electrophoretic mechanism having as driving force the negative electrical membrane potential (ΔΨ). The presence of phosphate increases spermine uptake by reducing ΔpH and enhancing ΔΨ. The transport system is a specific uniporter constituted by a protein channel exhibiting two asymmetric energy barriers with the spermine binding site located in the energy well between the two barriers. Although spermine transport is electrophoretic in origin, its accumulation does not follow the Nernst equation for the presence of an efflux pathway. Spermine efflux may be induced by different agents, such as FCCP, antimycin A and mersalyl, able to completely or partially reduce the ΔΨ value and, consequently, suppress or weaken the force necessary to maintain spermine in the matrix. However this efflux may also take place in normal conditions when the electrophoretic accumulation of the polycationic polyamine induces a sufficient drop in ΔΨ able to trigger the efflux pathway. The release of the polyamine is most probably electroneutral in origin and can take place in exchange with protons or in symport with phosphate anion. The activity of both the uptake and efflux pathways induces a continuous cycling of spermine across the mitochondrial membrane, the rate of which may be prominent in imposing the concentrations of spermine in the inner and outer compartment. Thus, this event has a significant role on mitochondrial permeability transition modulation and consequently on the triggering of intrinsic apoptosis.


Asunto(s)
Membranas Mitocondriales/metabolismo , Espermina/metabolismo , Membranas Mitocondriales/química , Espermina/química
13.
Bioorg Med Chem ; 21(22): 6965-72, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24095013

RESUMEN

A convenient synthetic route and the characterization of complexes trans-[PtCl2(L)(PPh3)] (L=Et2NH (2), (PhCH2)2NH (3), (HOCH2CH2)2NH) (4) are reported. The antiproliferative activity was evaluated on three human tumor cell lines. The investigation on the mechanism of action highlighted for the most active complex 4 the capacity to affect mitochondrial functions. In particular, both the induction of the mitochondrial permeability transition phenomenon and an aspecific membrane damage occurred, depending on concentration.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/síntesis química , Mitocondrias/efectos de los fármacos , Platino (Metal)/química , Platino (Metal)/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Células HeLa , Humanos , Isomerismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Fosfinas/química
14.
J Nat Prod ; 75(4): 557-62, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22458644

RESUMEN

Previous investigations on the biological effects of 3α-hydroxymasticadienonic acid (1) have demonstrated both anti-inflammatory and cytotoxic activities. However, neither the molecular mechanism of cytotoxic action nor the possible intracellular target(s) have been reported so far for this compound. The crucial role played by mitochondria on both cell survival and death, due to production of ATP and intrinsic apoptosis, respectively, prompted a study of the effect of 1 on isolated rat liver mitochondria. It was found that 1 causes a dose-dependent impairment of mitochondrial bioenergetic parameters, such as the respiratory control index and transmembrane electrical potential. Moreover, in the presence of Ca(2+), at a 10 µM concentration, 1 resulted in the induction of membrane permeability transition by oxidative stress, leading to the release of pro-apoptotic factors. At a 100 µM concentration, compound 1 affected mitochondrial Ca(2+) transport by inhibiting the accumulation of the cation in the mitochondrial matrix. Altogether, it was demonstrated that 1 induces an impairment of mitochondrial functions that may account for the cytotoxicity exhibited by this compound.


Asunto(s)
Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Triterpenos/aislamiento & purificación , Triterpenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Calcio/análisis , Calcio/metabolismo , Células HeLa , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Ratas , Triterpenos/química
15.
Amino Acids ; 42(2-3): 411-26, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21874532

RESUMEN

Metabolism of polyamines spermidine and spermine, and their diamine precursor, putrescine, has been a target for antineoplastic therapy since these naturally occurring alkyl amines were found essential for normal mammalian cell growth. Intracellular polyamine concentrations are maintained at a cell type-specific set point through the coordinated and highly regulated interplay between biosynthesis, transport, and catabolism. A correlation between regulation of cell proliferation and polyamine metabolism is described. In particular, polyamine catabolism involves copper-containing amine oxidases and FAD-dependent polyamine oxidases. Several studies showed an important role of these enzymes in several developmental and disease-related processes in both animals and plants through a control on polyamine homeostasis in response to normal cellular signals, drug treatment, environmental and/or cellular stressors. The production of toxic aldehydes and reactive oxygen species, H(2)O(2) in particular, by these oxidases using extracellular and intracellular polyamines as substrates, suggests a mechanism by which the oxidases can be exploited as antineoplastic drug targets. This minireview summarizes recent advances on the physiological roles of polyamine catabolism in animals and plants in an attempt to highlight differences and similarities that may contribute to determine in detail the underlined mechanisms involved. This information could be useful in evaluating the possibility of this metabolic pathway as a target for new antiproliferative therapies in animals and stress tolerance strategies in plants.


Asunto(s)
Adaptación Fisiológica , Poliaminas Biogénicas/metabolismo , Proliferación Celular , Fenómenos Fisiológicos de las Plantas , Estrés Fisiológico , Animales
16.
Amino Acids ; 42(2-3): 761-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21800257

RESUMEN

Agmatine, a divalent diamine with two positive charges at physiological pH, is transported into the matrix of liver mitochondria by an energy-dependent mechanism, the driving force of which is the electrical membrane potential. Its binding to mitochondrial membranes is studied by applying a thermodynamic treatment of ligand-receptor interactions on the analyses of Scatchard and Hill. The presence of two mono-coordinated binding sites S(1) and S(2), with a negative influence of S(2) on S(1), has been demonstrated. The calculated binding energy is characteristic for weak interactions. S(1) exhibits a lower binding capacity and higher binding affinity both of about two orders of magnitude than S(2). Experiments with idazoxan, a ligand of the mitochondrial imidazoline receptor I(2), demonstrate that S(1) site is localized on this receptor while S(2) is localized on the transport system. S(1) would act as a sensor of exogenous agmatine concentration, thus modulating the transport of the amine by its binding to S(2).


Asunto(s)
Agmatina/metabolismo , Receptores de Imidazolina/metabolismo , Mitocondrias/metabolismo , Animales , Sitios de Unión , Termodinámica
17.
Amino Acids ; 42(2-3): 751-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21805134

RESUMEN

Mitochondrial permeability transition (MPT) is correlated with the opening of a nonspecific pore, the so-called transition pore, that triggers bidirectional traffic of inorganic solutes and metabolites across the mitochondrial membrane. This phenomenon is caused by supraphysiological Ca(2+) concentrations and by other compounds leading to oxidative stress, while cyclosporin A, ADP, bongkrekic acid, antioxidant agents and naturally occurring polyamines strongly inhibit it. The effects of polyamines, including the diamine agmatine, have been widely studied in several types of mitochondria. The effects of monoamines on MPT have to date, been less well-studied, even if they are involved in a variety of neurological and neuroendocrine processes. This study shows that in rat liver mitochondria (RLM), monoamines such as tyramine, serotonin and dopamine amplify the swelling induced by calcium, and increase the oxidation of thiol groups and the production of hydrogen peroxide, effects that are counteracted by the above-mentioned inhibitors. In rat brain mitochondria (RBM), the monoamines do not amplify calcium-induced swelling, even if they demonstrate increases in the extent of oxidation of thiol groups and hydrogen peroxide production. In these mitochondria, the antioxidants are not at all or scarcely effective in suppressing mitochondrial swelling. In conclusion, we hypothesize that different mechanisms induce the MPT in the two different types of mitochondria evaluated. Calcium and monoamines induce oxidative stress in RLM, which in turn appears to induce and amplify MPT. This process is not apparent in RBM, where MPT seems resistant to oxidative stress.


Asunto(s)
Monoaminas Biogénicas/metabolismo , Encéfalo/metabolismo , Calcio/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Animales , Permeabilidad , Ratas
18.
Amino Acids ; 42(2-3): 741-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21809072

RESUMEN

The polyamine spermine is transported into the matrix of various types of mitochondria by a specific uniporter system identified as a protein channel. This mechanism is regulated by the membrane potential; other regulatory effectors are unknown. This study analyzes the transport of spermine in the presence of peroxides in both isolated rat liver and brain mitochondria, in order to evaluate the involvement of the redox state in this mechanism, and to compare its effect in both types of mitochondria. In liver mitochondria peroxides are able to inhibit spermine transport. This effect is indicative of redox regulation by the transporter, probably due to the presence of critical thiol groups along the transport pathway, or in close association with it, with different accessibility for the peroxides and performing different functions. In brain mitochondria, peroxides have several effects, supporting the hypothesis of a different regulation of spermine transport. The fact that peroxovanadate can inhibit tyrosine phosphatases in brain mitochondria suggests that mitochondrial spermine transport is regulated by tyrosine phosphorylation in this organ. In this regard, the evaluation of spermine transport in the presence of Src inhibitors suggests the involvement of Src family kinases in this process. It is possible that phosphorylation sites for Src kinases are present in the channel pathway and have an inhibitory effect on spermine transport under regulation by Src kinases. The results of this study suggest that the activity of the spermine transporter probably depends on the redox and/or tyrosine phosphorylation state of mitochondria, and that its regulation may be different in distinct organs.


Asunto(s)
Encéfalo/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Peróxidos/farmacología , Espermina/farmacología , Animales , Transporte Biológico , Fosforilación , Ratas , Ratas Wistar , Tirosina/metabolismo
19.
Amino Acids ; 42(2-3): 725-31, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21809073

RESUMEN

Polyamine transport across the mitochondria membrane occurs by a specific, common uniporter system and appears controlled by electrostatic interactions as for polyamine oxidative deamination by bovine serum and mitochondrial matrix amine oxidases was found. In fact in all the cases, while the catalytic constants or the maximum uptake rate values show little changes with the number of the positive charges of the substrates, Michaelis-Menten constant values demonstrate exponential dependence, confirming that electrostatic forces control the docking of the substrate into the enzyme active site or polyamine channel. By the treatment of the kinetic data in terms of Gibbs equation or Eyring theory, the contribution of each positive charge of the polyamine to the Gibbs energy values for the oxidative deamination of polyamines by two mammalian amine oxidase and for polyamine transport, are obtained. These values were comparable and in good accordance with those reported in literature. Previous studies demonstrated that two negative functional groups in the active site of bovine serum and mitochondrial matrix amine oxidases interact electrostatically with three positive charges of the polyamines in the formation of the enzyme-substrate complex. Remembering the structure-function relationship of proteins, our results suggest analogous interactions in the polyamine transporter and, as a consequence, a partial structural similitude between two proteins. It follows that the primary sequences of the amino oxidases and the mitochondrial transport may, in part, be conserved.


Asunto(s)
Amina Oxidasa (conteniendo Cobre)/metabolismo , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Animales , Biocatálisis , Cinética , Mamíferos , Electricidad Estática
20.
Biochem J ; 439(3): 505-16, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21732913

RESUMEN

The association of the SH3 (Src homology 3) domain of SFKs (Src family kinases) with protein partners bearing proline-rich motifs has been implicated in the regulation of SFK activity, and has been described as a possible mechanism of relocalization of SFKs to subcellular compartments. We demonstrate in the present study for the first time that p13, an accessory protein encoded by the HTLV-1 (human T-cell leukaemia virus type 1), binds the SH3 domain of SFKs via its C-terminal proline-rich motif, forming a stable heterodimer that translocates to mitochondria by virtue of its N-terminal mitochondrial localization signal. As a result, the activity of SFKs is dramatically enhanced, with a subsequent increase in mitochondrial tyrosine phosphorylation, and the recognized ability of p13 to insert itself into the inner mitochondrial membrane and to perturb the mitochondrial membrane potential is abolished. Overall, the present study, in addition to confirming that the catalytic activity of SFKs is modulated by interactors of their SH3 domain, leads us to hypothesize a general mechanism by which proteins bearing a proline-rich motif and a mitochondrial localization signal at the same time may act as carriers of SFKs into mitochondria, thus contributing to the regulation of mitochondrial functions under various pathophysiological conditions.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano/química , Proteínas Mitocondriales/química , Dominios Proteicos Ricos en Prolina , Proteínas de los Retroviridae/química , Dominios Homologos src , Familia-src Quinasas/química , Secuencias de Aminoácidos , Animales , Células HeLa , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Proteínas Mitocondriales/genética , Unión Proteica , Multimerización de Proteína/genética , Transporte de Proteínas/genética , Conejos , Ratas , Proteínas de los Retroviridae/genética , Familia-src Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...