Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 21(5): 2223-2237, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38552144

RESUMEN

The fibrillation of therapeutic peptides can present significant quality concerns and poses challenges for manufacturing and storage. A fundamental understanding of the mechanisms of fibrillation is critical for the rational design of fibrillation-resistant peptide drugs and can accelerate product development by guiding the selection of solution-stable candidates and formulations. The studies reported here investigated the effects of structural modifications on the fibrillation of a 29-residue peptide (PepA) and two sequence modified variants (PepB, PepC). The C-terminus of PepA was amidated, whereas both PepB and PepC retained the carboxylate, and Ser16 in PepA and PepB was substituted with a helix-stabilizing residue, α-aminoisobutyric acid (Aib), in PepC. In thermal denaturation studies by far-UV CD spectroscopy and fibrillation kinetic studies by fluorescence and turbidity measurements, PepA and PepB showed heat-induced conformational changes and were found to form fibrils, whereas PepC did not fibrillate and showed only minor changes in the CD signal. Pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS) showed a high degree of protection from HD exchange in mature PepA fibrils and its proteolytic fragments, indicating that most of the sequence had been incorporated into the fibril structure and occurred nearly simultaneously throughout the sequence. The effects of the net peptide charge and formulation pH on fibrillation kinetics were investigated. In real-time stability studies of two formulations of PepA at pH's 7.4 and 8.0, analytical methods detected significant changes in the stability of the formulations at different time points during the study, which were not observed during accelerated studies. Additionally, PepA samples were withdrawn from real-time stability and subjected to additional stress (40 °C, continuous shaking) to induce fibrillation; an approach that successfully amplified oligomers or prefibrillar species previously undetected in a thioflavin T assay. Taken together, these studies present an approach to differentiate and characterize fibrillation risk in structurally related peptides under accelerated and real-time conditions, providing a model for rapid, iterative structural design to optimize the stability of therapeutic peptides.


Asunto(s)
Diseño de Fármacos , Péptidos , Péptidos/química , Dicroismo Circular/métodos , Estabilidad de Medicamentos , Secuencia de Aminoácidos , Cinética , Ácidos Aminoisobutíricos/química , Estabilidad Proteica , Espectrometría de Masas/métodos
2.
Mol Pharm ; 21(4): 1965-1976, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38516985

RESUMEN

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) previously elucidated the interactions between excipients and proteins for liquid granulocyte colony stimulating factor (G-CSF) formulations, confirming predictions made using computational structure docking. More recently, solid-state HDX mass spectrometry (ssHDX-MS) was developed for proteins in the lyophilized state. Deuterium uptake in ssHDX-MS has been shown for various proteins, including monoclonal antibodies, to be highly correlated with storage stability, as measured by protein aggregation and chemical degradation. As G-CSF is known to lose activity through aggregation upon lyophilization, we applied the ssHDX-MS method with peptide mapping to four different lyophilized formulations of G-CSF to compare the impact of three excipients on local structure and exchange dynamics. HDX at 22 °C was confirmed to correlate well with the monomer content remaining after lyophilization and storage at -20 °C, with sucrose providing the greatest protection, and then phenylalanine, mannitol, and no excipient leading to progressively less protection. Storage at 45 °C led to little difference in final monomer content among the formulations, and so there was no discernible relationship with total deuterium uptake on ssHDX. Incubation at 45 °C may have led to a structural conformation and/or aggregation mechanism no longer probed by HDX at 22 °C. Such a conformational change was observed previously at 37 °C for liquid-formulated G-CSF using NMR. Peptide mapping revealed that tolerance to lyophilization and -20 °C storage was linked to increased stability in the small helix, loop AB, helix C, and loop CD. LC-MS HDX and NMR had previously linked loop AB and loop CD to the formation of a native-like state (N*) prior to aggregation in liquid formulations, suggesting a similar structural basis for G-CSF aggregation in the liquid and solid states.


Asunto(s)
Medición de Intercambio de Deuterio , Factor Estimulante de Colonias de Granulocitos , Humanos , Deuterio/química , Medición de Intercambio de Deuterio/métodos , Excipientes/química , Factor Estimulante de Colonias de Granulocitos/química , Espectrometría de Masas/métodos , Proteínas/química
3.
Mol Pharm ; 20(8): 4086-4099, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37466053

RESUMEN

The effects of atomic layer (ALC) coating on physical properties and storage stability were examined in solid powders containing myoglobin, a model protein. Powders containing myoglobin and mannitol (1:1 w/w) were prepared by lyophilization or spray drying and subjected to aluminum oxide or silicon oxide ALC coating. Uncoated samples of these powders as well as coated and uncoated samples of myoglobin as received served as controls. After preparation (t0), samples were analyzed for moisture content, reconstitution time, myoglobin secondary structure, crystallinity, and protein aggregate content. Samples were stored for 3 months (t3) under controlled conditions (53% RH, 40 °C) in both open and closed vials and then analyzed as above. At t3, the recovery of soluble native (i.e., monomeric) protein depended on formulation, coating type, and drying method and was up to 2-fold greater in coated samples than in uncoated controls. Promisingly, some samples with high recovery also showed low soluble aggregate content (<10%) at t3 and low total monomer loss; the latter was correlated to sample moisture content. Overall, the results demonstrate that ALC coatings can stabilize solid protein formulations during storage, providing benefits over uncoated controls.


Asunto(s)
Mioglobina , Mioglobina/química , Polvos/química , Liofilización , Estructura Secundaria de Proteína , Estabilidad de Medicamentos
4.
Biophys J ; 121(23): 4505-4516, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36325616

RESUMEN

Insulin forms amyloid fibrils under slightly destabilizing conditions, and B-chain residues are thought to play an important role in insulin fibrillation. Here, pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS), far-UV circular dichroism spectroscopy, thioflavin T (ThioT) fluorescence, turbidity, and soluble fraction measurements were used to monitor the kinetics and mechanisms of fibrillation of human insulin B-chain (INSB) in acidic solution (1 mg/mL, pH 4.5) under stressed conditions (40°C, continuous shaking). Initially, INSB rapidly formed ß-sheet-rich oligomers that were protected from HD exchange and showed weak ThioT binding. Subsequent fibril growth and maturation was accompanied by even greater protection from HD exchange and stronger ThioT binding. With peptic digestion of deuterated INSB, HDX-MS suggested early involvement of the N-terminal (1-11, 1-15) and central (12-15, 16-25) fragments in fibril-forming interactions, whereas the C-terminal fragment (25-30) showed limited involvement. The results provide mechanistic understanding of the intermolecular interactions and structural changes during INSB fibrillation under stressed conditions and demonstrate the application of pulsed HDX-MS to probe peptide fibrillation.


Asunto(s)
Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Insulina , Humanos , Medición de Intercambio de Deuterio , Hidrógeno
5.
PNAS Nexus ; 1(3): pgac052, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36741428

RESUMEN

Lyophilization is a common unit operation in pharmaceutical manufacturing but is a prolonged vacuum drying process with poor energy utilization. Microwave-assisted vacuum drying has been investigated to accelerate the lyophilization process. However, the literature lacks methodical approaches that consider the lyophilizer, the lyophilizate, the microwave power uniformity, the resulting heat uniformity, and the scalability. We present a microwave-vacuum drying method based on the statistical electromagnetics theory. The method offers an optimum frequency selection procedure that accounts for the lyophilizer and the lyophilizate. The 2.45 GHz frequency conventionally utilized is proven to be far from optimum. The method is applied in a microwave-assisted heating configuration to pharmaceutical excipients (sucrose and mannitol) and different myoglobin formulations in a lab-scale lyophilizer. At 18 GHz frequency and 60 W microwave power, the method shows nearly three times speed-up in the primary drying stage of sucrose relative to the conventional lyophilization cycle for typical laboratory batches. The uniformity of the microwave power inside the chamber is controlled within ± 1 dB. The resulting heating uniformity measured through residual moisture analysis shows 12.7% of normalized SD of moisture level across the batch in a microwave-assisted cycle as opposed to 15.3% in the conventional cycle. Conventional and microwave lyophilized formulations are characterized using solid-state hydrogen-deuterium exchange-mass spectrometry (ssHDX-MS), solid-state Fourier transform infrared spectroscopy (ssFTIR), circular dichroism (CD), and accelerated stability testing (AST). Characterization shows comparable protein structure and stability. Heat and mass transfer simulations quantify further effects of optimal volumetric heating via the high-frequency statistical microwave heating.

6.
Mol Pharm ; 18(8): 3116-3124, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34232660

RESUMEN

N-terminal glutamate can cyclize to form pyroglutamate (pGlu) in pharmaceutically relevant peptides and proteins. The reaction occurs nonenzymatically during storage for monoclonal antibodies and shows a strong 'pH' dependence in solution, but the solid-state reaction has not been studied in detail. This work investigates the effect of 'pH' and buffer species on pGlu formation for a model peptide (EVQLVESGGGLVQPGGSLR) in lyophilized solids and in solution. The model peptide was formulated from 'pH' 4 to 'pH' 9 in citrate, citrate-phosphate, phosphate, and carbonate buffers and stored at 50 °C for at least 10 weeks. pGlu formation and loss of the parent peptide were monitored by reversed-phase high-performance liquid chromatography. The apparent 'pH' dependence of the reaction rate in the solid state differed markedly from that in solution. Interestingly, in the 'pH' range often used to formulate mAbs ('pH' 5.5-6), the rate of pGlu formation in the solid state was greater than that in solution. The results have implications for the rational design of stable formulations of peptides and proteins, and for the transition from solid to solution formulations during development.


Asunto(s)
Concentración de Iones de Hidrógeno , Péptidos/química , Ácido Pirrolidona Carboxílico/química , Anticuerpos Monoclonales/química , Tampones (Química) , Catálisis , Química Farmacéutica/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Ciclización , Estabilidad de Medicamentos , Liofilización , Cinética , Estabilidad Proteica , Soluciones
7.
Mol Pharm ; 18(7): 2657-2668, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34096731

RESUMEN

Mannitol, leucine, and trehalose have been widely used in spray-dried formulations, especially for inhalation formulations. The individual contribution of these excipients on protein physical stability in spray-dried solids was studied here using bovine serum albumin (BSA) as a model protein. The spray-dried solids were characterized with scanning electron microscopy, powder X-ray diffraction, and solid-state Fourier-transform infrared spectroscopy to analyze particle morphology, crystallinity, and secondary structure change, respectively. Advanced solid-state characterizations were conducted with solid-state hydrogen-deuterium exchange (ssHDX) and solid-state nuclear magnetic resonance (ssNMR) to explore protein conformation and molecular interactions in the context of the system physical stability. Trehalose remained amorphous after spray-drying and was miscible with BSA, forming hydrogen bonds to maintain protein conformation, whereby this system showed the least monomer loss in the stability study. As indicated by ssNMR, both crystalline and amorphous forms of mannitol existed in the spray-dried BSA-mannitol solids, which explained its partial stabilizing effect on BSA. Leucine showed the strongest crystallization tendency after spray-drying and did not provide a stabilizing effect due to substantial immiscibility and phase separation with BSA as a result of crystal formation. This work showed novel applications of ssNMR in examining protein conformation and protein-excipient interaction in dry formulations. Overall, our results demonstrate the pivotal role of advanced solid-state characterization techniques in understanding the physical stability of spray-dried protein solids.


Asunto(s)
Excipientes/metabolismo , Manitol/química , Polvos/metabolismo , Albúmina Sérica Bovina/metabolismo , Animales , Bovinos , Cristalización , Excipientes/química , Liofilización , Polvos/química , Conformación Proteica , Estabilidad Proteica , Albúmina Sérica Bovina/química
8.
J Pharm Sci ; 110(6): 2379-2385, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33711346

RESUMEN

Antibody drug conjugates (ADCs) have been at the forefront in cancer therapy due to their target specificity. All the FDA approved ADCs are developed in lyophilized form to minimize instability associated with the linker that connects the cytotoxic drug and the antibody during shipping and storage. We present here solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS) as a tool to analyze protein structure and matrix interactions for formulations of an ADC with and without commonly used excipients. We compared results of the ssHDX-MS with accelerated stability results using size-exclusion chromatography and determined that the former technique was able to successfully identify the destabilizing effects of mannitol and polysorbate 80. In comparison, Fourier-transform infrared spectroscopy results were inconclusive. The agreement between ssHDX-MS and stressed stability studies supports the potential of ssHDX-MS as a method of predicting relative stability of different formulations.


Asunto(s)
Medición de Intercambio de Deuterio , Inmunoconjugados , Deuterio , Estabilidad de Medicamentos , Liofilización , Hidrógeno , Espectrometría de Masas
9.
Int J Pharm ; 596: 120263, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33486024

RESUMEN

Lyophilized powders containing myoglobin and various excipients were subjected to ssHDX-MS at different temperatures and D2O vapor activity (RH). Deuterium incorporation was fitted to a bi-exponential association model for each formulation and the dependence of regression parameters on temperature and RH was evaluated. Data fitted best to a simplified model in which the slow exponential term was considered invariant with temperature and RH while the fast exponential term retained its temperature and RH dependence. This suggests that rapid rate processes such as water vapor sorption and initial deuterium labeling may be more dependent on temperature and RH than slower processes such as sequential exchange and transport in the solid matrix.


Asunto(s)
Medición de Intercambio de Deuterio , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Liofilización , Humedad , Hidrógeno , Temperatura
10.
Int J Pharm ; 594: 120169, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33333176

RESUMEN

This study aims to determine the impacts of drying method and excipient on changes in protein structure and physical stability of model protein solids. Protein solids containing one of two model proteins (lysozyme or myoglobin) were produced with or without excipients (sucrose or mannitol) using freeze drying or spray freeze drying (SFD). The protein powders were then characterized using solid-state Fourier transform infrared spectroscopy (ssFTIR), differential scanning calorimetry (DSC), circular dichroism spectrometry (CD), size exclusion chromatography (SEC), BET surface area measurements and solid-state hydrogen deuterium exchange with mass spectrometry (ssHDX-MS). ssFTIR and CD could identify little to no difference in structure of the proteins in the formulation. ssHDX-MS was able to identify the population heterogeneity, which was undetectable by conventional characterization techniques of ssFTIR and CD. ssHDX-MS metrics such as Dmax and peak area showed a good correlation with the protein physical instability (loss of the monomeric peak area by size exclusion chromatography) in 90-day stability studies conducted at 40 °C for lysozyme. Higher specific surface area was associated with greater loss in monomer content for myoglobin-mannitol formulations as compared to myoglobin-only formulations. Spray freeze drying seems a viable manufacturing technique for protein solids with appropriate optimization of formulations. The differences observed within the formulations and between the processes using ssHDX-MS, BET surface area measurements and SEC in this study provide an insight into the influence of drying methods and excipients on protein physical stability.


Asunto(s)
Química Farmacéutica , Excipientes , Composición de Medicamentos , Estabilidad de Medicamentos , Liofilización , Espectrometría de Masas
11.
Biophys J ; 120(1): 86-100, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33220304

RESUMEN

Some therapeutic peptides self-assemble in solution to form ordered, insoluble, ß-sheet-rich amyloid fibrils. This physical instability can result in reduced potency, cause immunogenic side effects, and limit options for formulation. Understanding the mechanisms of fibrillation is key to developing rational mitigation strategies. Here, amide hydrogen-deuterium exchange with mass spectrometric analysis (HDX-MS) coupled with proteolytic digestion was used to identify the early stage interactions leading to fibrillation of human calcitonin (hCT), a peptide hormone important in calcium metabolism. hCT fibrillation kinetics was sigmoidal, with lag, growth, and plateau phases as shown by thioflavin T and turbidity measurements. HDX-MS of fibrillating hCT (pH 7.4; 25°C) suggested early involvement of the N-terminal (1-11) and central (12-19) fragments in interactions during the lag phase, whereas C-terminal fragments (20-32 and 26-32) showed limited involvement during this period. The residue-level information was used to develop phosphorylated hCT analogs that showed modified fibrillation that depended on phosphorylation site. Phosphorylation in the central region resulted in complete inhibition of fibrillation for the phospho-Thr-13 hCT analog, whereas phosphorylation in the N-terminal and C-terminal regions inhibited but did not prevent fibrillation. Reduction of the Cys1-Cys7 disulfide bond resulted in faster fibrillation with involvement of different hCT residues as indicated by pulsed HDX-MS. Together, the results demonstrate that small structural changes have significant effects on hCT fibrillation and that understanding these effects can inform the rational development of fibrillation-resistant hCT analogs.


Asunto(s)
Amiloide , Calcitonina , Amiloide/metabolismo , Calcitonina/metabolismo , Disulfuros , Humanos , Cinética , Fosforilación
12.
Mol Pharm ; 17(9): 3541-3552, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32786954

RESUMEN

The reversibility of solid-state hydrogen-deuterium exchange (ssHDX) and the effects of prehydration on the rate and extent of deuterium incorporation were evaluated using poly-d,l-alanine (PDLA) peptides colyophilized with various excipients. In prehydration studies, samples were equilibrated at a controlled relative humidity (6% or 11% RH) for 12 h and then transferred to corresponding D2O humidity conditions (6% or 11% RD) for deuterium labeling. In amorphous samples, the rate and extent of deuterium incorporation were similar in prehydrated samples and controls not subjected to prehydration. In reversibility studies, PDLA samples were maximally deuterated in controlled D2O humidity conditions (6% or 11% RD) and then transferred to corresponding H2O relative humidity (0%, 6%, 11%, or 43% RH). Hysteresis in deuterium removal was observed when compared with the deuterium incorporation kinetics for all formulations and conditions, confirming that the reaction is reversible in the solid state and that the forward and reverse processes differ. The extent of deuterium loss reached a plateau that depended on the delabeling relative humidity. Reverse reaction rate constants were quantified using a first-order kinetic model, a limiting case of the reversible first-order model applicable under sink conditions. For other conditions, plateau (steady-state) deuteration levels were related to forward and reverse rate constants in a reversible first-order kinetic model. The results support a mechanistic interpretation of ssHDX kinetics as a reversible first-order process, in which the forward (deuteration) rate depends on the activity of the deuterium donor.


Asunto(s)
Deuterio/química , Hidrógeno/química , Química Farmacéutica/métodos , Medición de Intercambio de Deuterio/métodos , Excipientes/química , Humedad , Cinética , Péptidos/química
13.
Mol Pharm ; 17(9): 3501-3512, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32672982

RESUMEN

The effects of peptide secondary structure on the rate and extent of deuterium incorporation in solid-state hydrogen deuterium exchange mass spectrometry (ssHDX-MS) were assessed. Unstructured poly-d,l-alanine (PDLA) peptides, an α-helical model peptide (peptide A) and a ß-sheet model peptide (peptide B), were co-lyophilized with various excipients. Peptide structures were confirmed in solution using circular dichroism (CD) spectroscopy and in the solid state with Fourier transform infrared (FTIR) spectroscopy. ssHDX-MS was conducted at two relative humidities (11 and 23% RH D2O) and deuterium uptake kinetics were monitored over 10 days. The relative contributions of peptide secondary structure and matrix interactions to deuteration incorporation were evaluated by comparing the ssHDX-MS kinetic data of peptide A and peptide B with PDLA of similar molecular weight. The results demonstrate that both peptide secondary structure and interactions with the solid matrix contribute to the protection from exchange in ssHDX-MS. A quantitative data analysis and interpretation method is presented, in which the number of protected amide bonds is calculated as the difference between the maximum deuterium incorporation in solution and in solid samples.


Asunto(s)
Deuterio/química , Hidrógeno/química , Péptidos/química , Medición de Intercambio de Deuterio/métodos , Excipientes/química , Cinética , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta
14.
J Pharm Sci ; 109(1): 709-718, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31034909

RESUMEN

Excipients used in lyophilized protein drug products are often selected by a trial-and-error method, in part, because the analytical methods used to detect protein-excipient interactions in lyophilized solids are limited. In this study, photolytic labeling was used to probe interactions between salmon calcitonin (sCT) and excipients in lyophilized solids. Two diazirine-derived photo-excipients, photo-leucine (pLeu) and photo-glucosamine (pGlcN), were incorporated into lyophilized solids containing sCT, together with an unlabeled excipient (sucrose or histidine) at prelyophilization pH values from 6 to 9.9. Commercially available pLeu was selected as an ionizable photo-excipient and amino acid analog, while pGlcN was synthesized as an analog of sugar-based excipients. Photolytic labeling was induced by exposing the solids to UV light (365 nm, 30-60 min), and the resulting products were identified and quantified with liquid-chromatography mass spectrometry. The distribution of photo-reaction products was affected by the photoreactive reagent used, the type of unlabeled excipient, and the solution pH before lyophilization. When other components of the solid were identical, the extent and sites of labeling on sCT were different for pGlcN and pLeu. The results suggest that ionizable and nonionizable excipients interact differently with sCT in lyophilized solids and that photo-excipients can be used to map these interactions.


Asunto(s)
Calcitonina/química , Excipientes/efectos de la radiación , Glucosamina/efectos de la radiación , Leucina/efectos de la radiación , Rayos Ultravioleta , Composición de Medicamentos , Excipientes/química , Liofilización , Glucosamina/química , Histidina/química , Concentración de Iones de Hidrógeno , Leucina/química , Fotólisis , Prueba de Estudio Conceptual , Sacarosa/química , Factores de Tiempo
15.
Pharm Res ; 37(1): 14, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873808

RESUMEN

PURPOSE: The aim of this study is to determine the effects of saccharide-containing excipients on the surface composition of spray-dried protein formulations and their matrix heterogeneity. METHODS: Spray-dried formulations of myoglobin or bovine serum albumin (BSA) were prepared without excipient or with sucrose, trehalose, or dextrans. Samples were characterized by solid-state Fourier-transform infrared spectroscopy (ssFTIR), differential scanning calorimetry (DSC), size exclusion chromatography (SEC) and scanning electron microscopy (SEM). Protein surface coverage was determined by X-ray photoelectron spectroscopy (XPS), while conformational differences were determined by solid-state hydrogen/deuterium exchange with mass spectrometry (ssHDX-MS). RESULTS: Structural differences were exhibited with the inclusion of different excipients, with dextran formulations indicating perturbation of secondary structure. XPS indicated sucrose and trehalose reduced protein surface concentration better than dextran-containing formulations. Using ssHDX-MS, the amount of deuterium incorporation and populations present were the largest in the samples processed with dextrans. Linear correlation was found between protein surface coverage and ssHDX-MS peak area (R2 = 0.853) for all formulations with saccharide-containing excipients. CONCLUSIONS: Lower molecular weight species of saccharides tend to enrich the particle surface and reduce protein concentration at the air-liquid interface, resulting in reduced population heterogeneity and improved physical stability, as identified by ssHDX-MS.


Asunto(s)
Excipientes/química , Mioglobina/química , Albúmina Sérica Bovina/química , Química Farmacéutica/métodos , Desecación/métodos , Deuterio/química , Dextranos/química , Espectrometría de Masas/métodos , Sacarosa/química , Propiedades de Superficie , Trehalosa/química
16.
Mol Pharm ; 16(11): 4485-4495, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31568722

RESUMEN

Solid-state hydrogen-deuterium exchange with mass spectrometry (ssHDX-MS) was evaluated as an analytical method to rapidly screen and select an optimal lyophilized fragment antigen binding protein (Fab) formulation and the optimal lyophilization cycle. ssHDX-MS in lyophilized Fab formulations, varying in stabilizer type and stabilizer/protein ratio, was conducted under controlled humidity and temperature. The extent of deuterium incorporation was measured using mass spectrometry and correlated with solid-state stress degradation at 50 °C as measured by size exclusion chromatography (SEC) and ion-exchange chromatography (IEC). ssHDX-MS was also used to evaluate the impact of three different types of lyophilization processing on storage stability: controlled ice nucleation (CN), uncontrolled ice nucleation (UCN), and annealing (AN). The extent of deuterium incorporation for different Fab formulations agreed with the order of solid-state stress degradation, with formulations having lower deuterium incorporation showing lower stress-induced degradation (aggregation and charge modifications). For lyophilization processing, no significant effect of ice nucleation was observed in either solid-state stress degradation or in the extent of deuterium incorporation for high concentration Fab formulations (25 mg/mL). In contrast, for low concentration Fab formulations (2.5 mg/mL), solid-state stability from different lyophilization processes correlated with the extent of deuterium incorporation. The order of solid-state degradation (AN < CN < UCN) was the same as the extent of deuterium incorporation on ssHDX-MS (AN < CN < UCN). The extent of deuterium incorporation on ssHDX-MS correlated well with the solid-state stress degradation for different Fab formulations and lyophilization processing methods. Thus, ssHDX-MS can be used to rapidly screen and optimize the formulation and lyophilization process for a lyophilized Fab, reducing the need for time-consuming stress degradation studies.


Asunto(s)
Deuterio/química , Hidrógeno/química , Fragmentos Fab de Inmunoglobulinas/química , Química Farmacéutica/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía por Intercambio Iónico/métodos , Medición de Intercambio de Deuterio/métodos , Liofilización/métodos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Cinética , Unión Proteica
17.
Int J Pharm ; 568: 118512, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31301464

RESUMEN

Deuterium incorporation in solid-state hydrogen deuterium exchange with mass spectrometry (ssHDX-MS) has been correlated with protein aggregation on storage in sugar-based solid matrices. Here, the effects of sucrose, arginine and histidine buffer on the rate of aggregation of a lyophilized monoclonal antibody (mAb) were assessed using design of experiments (DoE) and response surface methodology. Lyophilized formulations were characterized using ssHDX-MS and Fourier transform infrared spectroscopy (ssFTIR) to assess potential correlation with stability in solid state. The samples were subjected to storage stability at 5 °C and stressed stability at 40 °C/75% RH for 6 months, and the aggregation rate was measured using size exclusion chromatography (SEC). Different levels of arginine had no significant effect on deuterium uptake in ssHDX-MS, although stability studies showed that aggregation rate decreased with increasing arginine concentration. Similarly, when histidine buffer was replaced with phosphate buffer at the same pH and molarity, ssHDX-MS showed no differences in deuterium uptake, but storage stability studies showed a significant increase in aggregation rate. The results suggest that proteins can be stabilized in amorphous solids by ionic interactions which ssHDX-MS does not detect, an important indication of the limitations of the method.


Asunto(s)
Anticuerpos Monoclonales/química , Arginina/química , Inmunoglobulina G/química , Sacarosa/química , Deuterio/química , Medición de Intercambio de Deuterio , Histidina/química , Espectrometría de Masas , Fosfatos/química , Conformación Proteica , Estabilidad Proteica
18.
Mol Pharm ; 16(7): 2935-2946, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31244225

RESUMEN

Solid-state hydrogen-deuterium exchange mass spectrometry (ssHDX-MS) has been developed to study proteins in amorphous solids, but the relative contributions of protein structure and protein-matrix interactions to exchange are not known. In this work, short unstructured poly-d,l-alanine (PDLA) peptides were colyophilized with sucrose, trehalose, mannitol, sodium chloride, or guanidine hydrochloride to quantify the contributions of protein-matrix interactions to deuterium uptake in ssHDX-MS in the absence of a higher order structure. Deuterium incorporation differed with the excipient type and relative humidity (RH) in D2O(g), effects that were not observed in solution controls and are not described by the Linderstrom-Lang model for solution HDX. A reversible pseudo first-order kinetic model for deuterium uptake in ssHDX-MS is proposed. The model agrees with the experimentally observed dependences of the apparent deuteration rate and plateau value on RH in ssHDX-MS of PDLA and reduces to the Linderstrom-Lang limit when the forward rate of exchange is much greater than the reverse rate.


Asunto(s)
Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Excipientes/química , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Péptidos/química , Deuterio/química , Liofilización/métodos , Guanidina/química , Humedad , Cinética , Manitol/química , Modelos Químicos , Estructura Secundaria de Proteína , Cloruro de Sodio/química , Sacarosa/química , Trehalosa/química
19.
Int J Pharm ; 567: 118470, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31252148

RESUMEN

Powders containing one of four model proteins (myoglobin, bovine serum albumin, lysozyme, ß-lactoglobulin) were formulated with either sucrose, trehalose, or mannitol and dried using lyophilization or spray-drying. The powders were characterized using solid-state Fourier transform infrared spectroscopy (ssFTIR), solid-state fluorescence spectroscopy, differential scanning calorimetry (DSC) and solid-state hydrogen/deuterium exchange mass spectrometry (ssHDX-MS). ssFTIR and fluorescence spectroscopy identified minor structural differences among powders with different excipients and drying methods for some proteins. Using ssHDX-MS, differences in protein structure were observed among protein formulations containing sucrose or trehalose and mannitol, and/or with varying processing conditions, including proteins like ß-lactoglobulin, for which standard characterization techniques showed no differences. Proteins processed by spray-drying typically showed greater heterogeneity by ssHDX-MS than those lyophilized; these differences were not detected by ssFTIR or solid-state fluorescence spectroscopy. The ssHDX-MS metrics were better correlated with protein physical instability measured by size-exclusion chromatography in 90-day stability studies (40 °C, 33% RH) than with the results of DSC, ssFTIR, or fluorescence spectroscopy. Thus, ssHDX-MS detected subtle changes in conformation and/or matrix interactions for these proteins that were correlated with storage stability, suggesting that the method can be used to design robust solid-state pharmaceutical protein products more rapidly.


Asunto(s)
Desecación/métodos , Lactoglobulinas/química , Muramidasa/química , Mioglobina/química , Albúmina Sérica Bovina/química , Excipientes/química , Liofilización , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Conformación Proteica , Estabilidad Proteica
20.
Mol Pharm ; 16(3): 1053-1064, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30721080

RESUMEN

Interactions of a lyophilized peptide with water and excipients in a solid matrix were explored using photolytic labeling. A model peptide "KLQ" (Ac-QELHKLQ-NHCH3) was covalently labeled with NHS-diazirine (succinimidyl 4,4'-azipentanoate), and the labeled peptide (KLQ-SDA) was formulated and exposed to UV light in both solution and lyophilized solids. Solid samples contained the following excipients at a 1:400 molar ratio: sucrose, trehalose, mannitol, histidine, or arginine. Prior to UV exposure, the lyophilized solids were exposed to various relative humidity (RH) environments (8, 13, 33, 45, and 78%), and the resulting solid moisture content (Karl Fischer titration) and glass transition temperature ( Tg; differential scanning calorimetry, DSC) were measured. To initiate photolytic labeling, solution and solid samples were exposed to UV light at 365 nm for 30 min. Photolytic-labeling products were quantified using reversed-phase high-performance liquid chromatography (rp-HPLC) and mass spectrometry (MS). In lyophilized solids, studies excluding oxygen and using H218O confirmed that the source of oxygen in KLQ adducts with a mass increase of 18 amu are attributable to reaction with water, while those with a mass increase of 16 amu are not attributable to reaction with either water or molecular oxygen. In solids containing sucrose or trehalose, peptide-excipient adducts decreased with increasing solid moisture content, while peptide-water adducts increased only at lower RH exposure and then plateaued, in partial agreement with the water replacement hypothesis.


Asunto(s)
Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Liofilización/métodos , Péptidos/química , Fotólisis/efectos de la radiación , Agua/química , Rastreo Diferencial de Calorimetría , Cromatografía de Fase Inversa , Diazometano/análogos & derivados , Diazometano/química , Excipientes/química , Humedad , Enlace de Hidrógeno , Espectrometría de Masas , Oxígeno/química , Sacarosa/química , Temperatura de Transición , Trehalosa/química , Rayos Ultravioleta , Vitrificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA