Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 154(15): 154303, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33887943

RESUMEN

When the enhanced electromagnetic field of a confined light mode interacts with photoactive molecules, the system can be driven into the regime of strong coupling, where new hybrid light-matter states, polaritons, are formed. Polaritons, manifested by the Rabi split in the dispersion, have shown potential for controlling the chemistry of the coupled molecules. Here, we show by angle-resolved steady-state experiments accompanied by multi-scale molecular dynamics simulations that the molecular Stokes shift plays a significant role in the relaxation of polaritons formed by organic molecules embedded in a polymer matrix within metallic Fabry-Pérot cavities. Our results suggest that in the case of Rhodamine 6G, a dye with a significant Stokes shift, excitation of the upper polariton leads to a rapid localization of the energy into the fluorescing state of one of the molecules, from where the energy scatters into the lower polariton (radiative pumping), which then emits. In contrast, for excitonic J-aggregates with a negligible Stokes shift, the fluorescing state does not provide an efficient relaxation gateway. Instead, the relaxation is mediated by exchanging energy quanta matching the energy gap between the dark states and lower polariton into vibrational modes (vibrationally assisted scattering). To understand better how the fluorescing state of a molecule that is not strongly coupled to the cavity can transfer its excitation energy to the lower polariton in the radiative pumping mechanism, we performed multi-scale molecular dynamics simulations. The results of these simulations suggest that non-adiabatic couplings between uncoupled molecules and the polaritons are the driving force for this energy transfer process.

2.
J Chem Phys ; 138(4): 044707, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23387615

RESUMEN

In this article we experimentally demonstrate the strong coupling between surface plasmon polaritons (SPP) and the S(2) state of ß-carotene. The SPPs are excited by prism coupling technique on a thin silver film with ß-carotene embedded in a polymer layer on top of that. Rabi splittings with energies 80 and 130 meV are observed in the recorded dispersion relations. Both coupled oscillator model and transfer matrix method are used to fit the experimental results. The scattered radiation of the propagating strongly coupled SPP-S(2) hybrids is collected and an increase of the low energy splitting to 120 meV is observed compared to the reflectivity data. In addition, we performed molecule excitation by laser and analyzed the emission patterns revealing clear surface plasmon coupled fluorescence of ß-carotene. By increasing the concentration of ß-carotene we are able to collect also surface plasmon coupled Raman scattering. This study substantially extends the SPP-molecular excitation strong coupling studies to biomolecules, and energy transfer and coupling properties of excited states of carotenoids.


Asunto(s)
Nanoestructuras/química , Nanotecnología , Resonancia por Plasmón de Superficie , beta Caroteno/química
3.
Phys Rev Lett ; 103(5): 053602, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19792498

RESUMEN

We report on strong coupling between surface-plasmon polaritons (SPP) and Rhodamine 6G (R6G) molecules, with double vacuum Rabi splitting energies up to 230 and 110 meV. In addition, we demonstrate the emission of all three energy branches of the strongly coupled SPP-exciton hybrid system, revealing features of system dynamics that are not visible in conventional reflectometry. Finally, in analogy to tunable-Q microcavities, we show that the Rabi splitting can be controlled by adjusting the interaction time between waveguided SPPs and R6G deposited on top of the waveguide. The interaction time can be controlled with sub-fs precision by adjusting the length of the R6G area with standard lithography methods.

4.
Opt Express ; 15(16): 9908-17, 2007 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-19547341

RESUMEN

We use molecules to couple light into and out of microscale plasmonic waveguides. Energy transfer, mediated by surface plasmons, from donor molecules to acceptor molecules over ten micrometer distances is demonstrated. Also surface plasmon coupled emission from the donor molecules is observed at similar distances away from the excitation spot. The lithographic fabrication method we use for positioning the dye molecules allows scaling to nanometer dimensions. The use of molecules as couplers between far-field and near-field light offers the advantages that no special excitation geometry is needed, any light source can be used to excite plasmons and the excitation can be localized below the diffraction limit. Moreover, the use of molecules has the potential for integration with molecular electronics and for the use of molecular self-assembly in fabrication. Our results constitute a proof-of-principle demonstration of a plasmonic waveguide where signal in- and outcoupling is done by molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...