Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecology ; 104(12): e4173, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37768609

RESUMEN

Biological invasions are expected to alter food web structure, but there are limited empirical data directly comparing invaded versus uninvaded food webs, particularly in species-rich, tropical systems. We characterize for the first time the food web of Lake Gatun-a diverse and highly invaded tropical freshwater lake within the Panama Canal. We used stable isotope analysis to reconstruct the trophic structure of the fish community of Lake Gatun and to compare it to that of a minimally invaded reference lake, Lake Bayano. We found significant differences between the trophic structures of these two Neotropical lakes, notably that Lake Gatun's fish community was characterized by a longer food chain, greater isotopic diversity, a broader range of trophic positions and body sizes, and shifts in the isotopic positions of several native taxa relative to Lake Bayano. The degree of isotopic overlap between native and non-native trophic guilds in Lake Gatun was variable, with herbivores exhibiting the lowest (20%-29%) overlap and carnivores the greatest (81%-100%). Overall, our results provide some of the first empirical evidence for the ways in which multiple introduced and native species may partition isotopic space in a species-rich tropical freshwater food web.


Asunto(s)
Cadena Alimentaria , Lagos , Animales , Lagos/química , Peces , Isótopos , Panamá
3.
Science ; 376(6598): 1215-1219, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679394

RESUMEN

Early naturalists suggested that predation intensity increases toward the tropics, affecting fundamental ecological and evolutionary processes by latitude, but empirical support is still limited. Several studies have measured consumption rates across latitude at large scales, with variable results. Moreover, how predation affects prey community composition at such geographic scales remains unknown. Using standardized experiments that spanned 115° of latitude, at 36 nearshore sites along both coasts of the Americas, we found that marine predators have both higher consumption rates and consistently stronger impacts on biomass and species composition of marine invertebrate communities in warmer tropical waters, likely owing to fish predators. Our results provide robust support for a temperature-dependent gradient in interaction strength and have potential implications for how marine ecosystems will respond to ocean warming.


Asunto(s)
Organismos Acuáticos , Biomasa , Peces , Calor , Invertebrados , Conducta Predatoria , Animales , Calentamiento Global , Océanos y Mares
4.
Ecology ; 103(3): e3604, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34897657

RESUMEN

The enemy release hypothesis (ERH) posits that introduced species often leave their enemies behind when introduced to a new range. This release from enemies may allow introduced species to achieve higher growth and reproduction and may explain why some invaders flourish in new locations. Red mangroves (Rhizophora mangle) were introduced to Hawai'i from Florida over a century ago. Because Hawai'i has no native mangroves, the arrival of R. mangle fundamentally changed the structure and function of estuarine shorelines. While numerous enemies affect red mangroves in their native range (tropical America), in Hawai'i, mangroves apparently experience little herbivory, which may explain why introduced mangroves are so productive, fecund, and continue to spread. In this study, we compared the effects of enemies in native and introduced populations of brackish red mangroves (R. mangle) in 8-10 sites in the native range (Florida, Belize, and Panama) and introduced range of mangroves (Hawai'i). At each site, we measured the (1) occurrence of enemies using timed visual surveys, (2) occurrence of damage to different mangrove structures (leaves, apical buds, dead twigs, roots, propagules, and seedlings), and (3) rate of propagule herbivory using tethering experiments. Consistent with the ERH, we found an order of magnitude less damage and fewer enemies in introduced than native mangrove sites. While introduced mangroves harbored few enemies and minimal damage, native mangroves were affected by numerous enemies, including leaf-eating crabs, specialist bud moths, wood-boring insects and isopods, and propagule predators. These patterns were consistent across all plant structures (roots to leaves), among marine and terrestrial enemies, and across functional groups (browsers, borers, pathogens, etc.), which demonstrates enemy escape occurs consistently among different functional groups and via trophic (e.g., herbivores) and non-trophic (e.g., root borers) interactions. Our study is among the first biogeographical enemy release studies to take a comprehensive approach to quantifying the occurrence of damage from a broad suite of marine and terrestrial taxa across an array of wetland plant structures. Understanding how natural enemies alter this key foundation species will become increasingly relevant globally as mangroves continue to invade new regions through intentional plantings or range expansion driven by climate change.


Asunto(s)
Ecosistema , Rhizophoraceae , Animales , Herbivoria , Insectos , Especies Introducidas
5.
PLoS Biol ; 19(8): e3001322, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34411089

RESUMEN

Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host's physiological capacities; however, the identity and functional role(s) of key members of the microbiome ("core microbiome") in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems' capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts' plastic and adaptive responses to environmental change requires (i) recognizing that individual host-microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.


Asunto(s)
Aclimatación , Organismos Acuáticos/microbiología , Evolución Biológica , Ecología , Microbiota , Animales , Ecosistema , Humanos , Simbiosis
6.
Proc Biol Sci ; 288(1953): 20210703, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34157870

RESUMEN

In dynamic systems, organisms are faced with variable selective forces that may impose trade-offs. In estuaries, salinity is a strong driver of organismal diversity, while parasites shape species distributions and demography. We tested for trade-offs between low-salinity stress and parasitism in an invasive castrating parasite and its mud crab host along salinity gradients of two North Carolina rivers. We performed field surveys every six to eight weeks over 3 years to determine factors influencing parasite prevalence, host abundance, and associated taxa diversity. We also looked for signatures of low-salinity stress in the host by examining its response (time-to-right and gene expression) to salinity. We found salinity and temperature significantly affected parasite prevalence, with low-salinity sites (less than 10 practical salinity units (PSU)) lacking infection, and populations in moderate salinities at warmer temperatures reaching prevalence as high as 60%. Host abundance was negatively associated with parasite prevalence. Host gene expression was plastic to acclimation salinity, but several osmoregulatory and immune-related genes demonstrated source-dependent salinity response. We identified a genetic marker that was strongly associated with salinity against a backdrop of no neutral genetic structure, suggesting possible selection on standing variation. Our study illuminates how selective trade-offs in naturally dynamic systems may shape host evolutionary ecology.


Asunto(s)
Braquiuros , Parásitos , Animales , Estuarios , North Carolina , Salinidad
7.
Ecology ; 102(8): e03428, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34105781

RESUMEN

The hypothesis that biotic interactions strengthen toward lower latitudes provides a framework for linking community-scale processes with the macroecological scales that define our biosphere. Despite the importance of this hypothesis for understanding community assembly and ecosystem functioning, the extent to which interaction strength varies across latitude and the effects of this variation on natural communities remain unresolved. Predation in particular is central to ecological and evolutionary dynamics across the globe, yet very few studies explore both community-scale causes and outcomes of predation across latitude. Here we expand beyond prior studies to examine two important components of predation strength: intensity of predation (including multiple dimensions of the predator guild) and impact on prey community biomass and structure, providing one of the most comprehensive examinations of predator-prey interactions across latitude. Using standardized experiments, we tested the hypothesis that predation intensity and impact on prey communities were stronger at lower latitudes. We further assessed prey recruitment to evaluate the potential for this process to mediate predation effects. We used sessile marine invertebrate communities and their fish predators in nearshore environments as a model system, with experiments conducted at 12 sites in four regions spanning the tropics to the subarctic. Our results show clear support for an increase in both predation intensity and impact at lower relative to higher latitudes. The predator guild was more diverse at low latitudes, with higher predation rates, longer interaction durations, and larger predator body sizes, suggesting stronger predation intensity in the tropics. Predation also reduced prey biomass and altered prey composition at low latitudes, with no effects at high latitudes. Although recruitment rates were up to three orders of magnitude higher in the tropics than the subarctic, prey replacement through this process was insufficient to dampen completely the strong impacts of predators in the tropics. Our study provides a novel perspective on the biotic interaction hypothesis, suggesting that multiple components of the predator community likely contribute to predation intensity at low latitudes, with important consequences for the structure of prey communities.


Asunto(s)
Ecosistema , Conducta Predatoria , Animales , Biomasa , Peces , Invertebrados
8.
Mol Ecol ; 30(17): 4321-4337, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34162013

RESUMEN

By shuffling biogeographical distributions, biological invasions can both disrupt long-standing associations between hosts and parasites and establish new ones. This creates natural experiments with which to study the ecology and evolution of host-parasite interactions. In estuaries of the Gulf of Mexico, the white-fingered mud crab (Rhithropanopeus harrisii) is infected by a native parasitic barnacle, Loxothylacus panopaei (Rhizocephala), which manipulates host physiology and behaviour. In the 1960s, L. panopaei was introduced to the Chesapeake Bay and has since expanded along the southeastern Atlantic coast, while host populations in the northeast have so far been spared. We use this system to test the host's transcriptomic response to parasitic infection and investigate how this response varies with the parasite's invasion history, comparing populations representing (i) long-term sympatry between host and parasite, (ii) new associations where the parasite has invaded during the last 60 years and (iii) naïve hosts without prior exposure. A comparison of parasitized and control crabs revealed a core response, with widespread downregulation of transcripts involved in immunity and moulting. The transcriptional response differed between hosts from the parasite's native range and where it is absent, consistent with previous observations of increased susceptibility in populations lacking exposure to the parasite. Crabs from the parasite's introduced range, where prevalence is highest, displayed the most dissimilar response, possibly reflecting immune priming. These results provide molecular evidence for parasitic manipulation of host phenotype and the role of gene regulation in mediating host-parasite interactions.


Asunto(s)
Braquiuros , Parásitos , Thoracica , Animales , Braquiuros/genética , Interacciones Huésped-Parásitos/genética , Transcriptoma
9.
Ecology ; 102(8): e03434, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34114663

RESUMEN

Understanding the mechanisms of spatial variation of biological invasions, across local-to-global scales, has been a major challenge. The importance of evolutionary history for invasion dynamics was noted by Darwin, and several studies have since considered how biodiversity of source and recipient regions can influence the probability of invasions. For over a century, the Panama Canal has connected water bodies and biotas with different evolutionary histories, and created a global shipping hot spot, providing unique opportunities to test mechanisms that affect invasion patterns. Here, we test for asymmetry in both the extent of invasions and predation effects, a possible mechanism of biotic resistance, between two tropical oceans at similar latitudes. We estimated nonnative species (NNS) richness for sessile marine invertebrates, using standardized field surveys and literature synthesis, to examine whether invasions are asymmetrical, with more NNS present in the less diverse Pacific compared to the Atlantic. We also experimentally tested whether predation differentially limits the abundance and distribution of these invertebrates between oceans. In standardized surveys, observed total NNS richness was higher in the Pacific (18 NNS, 30% of all Pacific species) than the Atlantic (11 NNS, 13% of all Atlantic species). Similarly, literature-based records also display this asymmetry between coasts. When considering only the reciprocal exchange of NNS between Atlantic and Pacific biotas, NNS exchange from Atlantic to Pacific was eightfold higher than the opposite direction, exceeding the asymmetry predicted by random exchange based simply on differences of overall diversity per region. Predation substantially reduced biomass and changed NNS composition in the Pacific, but no such effects were detected on the Atlantic coast. Specifically, some dominant NNS were particularly susceptible to predation in the Pacific, supporting the hypothesis that predation may reduce the abundance of certain NNS here. These results are consistent with predictions that high diversity in source regions, and species interactions in recipient regions, shape marine invasion patterns. Our comparisons and experiments across two tropical ocean basins, suggest that global invasion dynamics are likely driven by both ecological and evolutionary factors that shape susceptibility to and directionality of invasions across biogeographic scales.


Asunto(s)
Biodiversidad , Invertebrados , Animales , Organismos Acuáticos , Océanos y Mares , Conducta Predatoria
10.
Ecology ; 102(6): e03335, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33709403

RESUMEN

Communities are shaped by a variety of ecological and environmental processes, each acting at different spatial scales. Seminal research on rocky shores highlighted the effects of consumers as local determinants of primary productivity and community assembly. However, it is now clear that the species interactions shaping communities at local scales are themselves regulated by large-scale oceanographic processes that generate regional variation in resource availability. Upwelling events deliver nutrient-rich water to coastal ecosystems, influencing primary productivity and algae-herbivore interactions. Despite the potential for upwelling to alter top-down control by herbivores, we know relatively little about the coupling between oceanographic processes and herbivory on tropical rocky shores, where herbivore effects on producers are considered to be strong and nutrient levels are considered to be limiting. By replicating seasonal molluscan herbivore exclusion experiments across three regions exposed to varying intensity of seasonal upwelling, separated by hundreds of kilometers along Panama's Pacific coast, we examine large-scale environmental determinants of consumer effects and community structure on tropical rocky shores. At sites experiencing seasonal upwelling, grazers strongly limited macroalgal cover when upwelling was absent, leading to dominance by crustose algae. As nutrients increased and surface water cooled during upwelling events, increases in primary productivity temporarily weakened herbivory, allowing foliose, turf and filamentous algae to replace crusts. Meanwhile, grazer effects were persistently strong at sites without seasonal upwelling. Our results confirm that herbivores are key determinants of tropical algal cover, and that the mollusk grazing guild can control initial stages of macroalgal succession. However, our focus on regional oceanographic conditions revealed that bottom-up processes regulate top-down control on tropical shorelines. This study expands on the extensive body of work highlighting the influence of upwelling on local ecological processes by demonstrating that nutrient subsidies delivered by upwelling events can weaken herbivory in tropical rocky shores.


Asunto(s)
Ecosistema , Herbivoria , Estaciones del Año
11.
PLoS One ; 16(3): e0247551, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33651807

RESUMEN

Host preference of symbionts evolves from fitness trade-offs. However, it is often unclear how interspecific variations in host response traits influence this evolutionary process. Using the association between the polyclad flatworm Paraprostatum echinolittorinae and its intertidal snail hosts on the Pacific Coast of Panama, we assessed how a symbiont's host preference is associated with varying host defenses and post-infestation performances. We first characterized the prevalence and intensity of worm infestation in five snail hosts (Tegula pellisserpentis, Nerita scabricosta, N. funiculata, Planaxis planicostatus, and Cerithium stercusmuscarum). We then used manipulative experiments to test flatworm's host choice, hosts' behavioral rejection of flatworms, and hosts' growth and survival following the infestation. In the field, flatworms were orders of magnitude more prevalent and dense in T. pellisserpentis, N. scabricosta, N. funiculata than P. planicostatus and C. stercusmuscarum, although the three former hosts were not necessarily more abundant. The results from our laboratory host selection trials mirrored these patterns; flatworms were 3 to 14 times more likely to choose T. pellisserpentis, N. scabricosta, N. funiculata over P. planicostatus and C. stercusmuscarum. The less preferred hosts frequently rejected flatworms via mantle contractions and foot withdrawals, which reduced the infestation rate by 39%-67%. These behaviors were less frequent or absent in the preferred hosts. Flatworm infestation variably influenced host performances in the field, negligibly affecting the growth and survival of T. pellisserpentis and N. funiculata but reducing the growth of P. planicostatus. Flatworms thus preferred less defended hosts that can also support higher worm densities without being harmed. Stable isotope analysis further revealed that flatworms are unlikely to feed on snail tissues and may live as a commensal in their preferred hosts. Our study demonstrates that host response traits can modulate a symbiont's host choice and calls for more explicit considerations of host response variability in host preference research.


Asunto(s)
Organismos Acuáticos/fisiología , Infecciones por Cestodos/epidemiología , Interacciones Huésped-Parásitos/fisiología , Platelmintos/fisiología , Caracoles/crecimiento & desarrollo , Caracoles/parasitología , Simbiosis/fisiología , Animales , Evolución Biológica , Infecciones por Cestodos/parasitología , Ecosistema , Océanos y Mares , Panamá , Fenotipo , Prevalencia
13.
Ecol Evol ; 10(13): 6449-6460, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32724525

RESUMEN

Long-term datasets are needed to evaluate temporal patterns in wildlife disease burdens, but historical data on parasite abundance are extremely rare. For more than a century, natural history collections have been accumulating fluid-preserved specimens, which should contain the parasites infecting the host at the time of its preservation. However, before this unique data source can be exploited, we must identify the artifacts that are introduced by the preservation process. Here, we experimentally address whether the preservation process alters the degree to which metazoan parasites are detectable in fluid-preserved fish specimens when using visual parasite detection techniques. We randomly assigned fish of three species (Gadus chalcogrammus, Thaleichthys pacificus, and Parophrys vetulus) to two treatments. In the first treatment, fish were preserved according to the standard procedures used in ichthyological collections. Immediately after the fluid-preservation process was complete, we performed parasitological dissection on those specimens. The second treatment was a control, in which fish were dissected without being subjected to the fluid-preservation process. We compared parasite abundance between the two treatments. Across 298 fish individuals and 59 host-parasite pairs, we found few differences between treatments, with 24 of 27 host-parasite pairs equally abundant between the two treatments. Of these, one pair was significantly more abundant in the preservation treatment than in the control group, and two pairs were significantly less abundant in the preservation treatment than in the control group. Our data suggest that the fluid-preservation process does not have a substantial effect on the detectability of metazoan parasites. This study addresses only the effects of the fixation and preservation process; long-term experiments are needed to address whether parasite detectability remains unchanged in the months, years, and decades of storage following preservation. If so, ecologists will be able to reconstruct novel, long-term datasets on parasite diversity and abundance over the past century or more using fluid-preserved specimens from natural history collections.

14.
Evol Appl ; 13(3): 545-558, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32431735

RESUMEN

Parasitism can represent a potent agent of selection, and introduced parasites have the potential to substantially alter their new hosts' ecology and evolution. While significant impacts have been reported for parasites that switch to new host species, the effects of macroparasite introduction into naïve populations of host species with which they have evolved remain poorly understood. Here, we investigate how the estuarine white-fingered mud crab (Rhithropanopeus harrisii) has adapted to parasitism by an introduced rhizocephalan parasite (Loxothylacus panopaei) that castrates its host. While the host crab is native to much of the East and Gulf Coasts of North America, its parasite is native only to the southern end of this range. Fifty years ago, the parasite invaded the mid-Atlantic, gradually expanding through previously naïve host populations. Thus, different populations of the same host species have experienced different degrees of historical interaction (and thus potential evolutionary response time) with the parasite: long term, short term, and naïve. In nine estuaries across this range, we examined whether and how parasite prevalence and host susceptibility to parasitism differs depending on the length of the host's history with the parasite. In field surveys, we found that the parasite was significantly more prevalent in its introduced range (i.e., short-term interaction) than in its native range (long-term interaction), a result that was also supported by a meta-analysis of prevalence data covering the 50 years since its introduction. In controlled laboratory experiments, host susceptibility to parasitism was significantly higher in naïve hosts than in hosts from the parasite's native range, suggesting that host resistance to parasitism is under selection. These results suggest that differences in host-parasite historical interaction can alter the consequences of parasite introductions in host populations. As anthropogenically driven range shifts continue, disruptions of host-parasite evolutionary relationships may become an increasingly important driver of ecological and evolutionary change.

15.
Biol Lett ; 16(2): 20190765, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32097594

RESUMEN

Organisms or societies are resource limited, causing important trade-offs between reproduction and defence. Given such trade-offs, optimal allocation theory predicts that, for animal societies with a soldier caste, allocation to soldiers should reflect local external threats. Although both threat intensity and soldier allocation can vary widely in nature, we currently lack strong evidence that spatial variation in threat can drive the corresponding variation in soldier allocation. The diverse guild of trematode parasites of the California horn snail provides a useful system to address this problem. Several of these species form colonies in their hosts with a reproductive division of labour including a soldier caste. Soldiers are non-reproductive and specialized in defence, attacking and killing invading parasites. We quantified invasion threat and soldier allocation for 168 trematode colonies belonging to six species at 26 sites spread among 10 estuaries in temperate and tropical regions. Spatial variation in invasion threat was matched as predicted by the relative number of soldiers for multiple parasite species. Soldier allocation correlated with invasion threat at fine spatial scales, suggesting that allocation is at least partly inducible. These results may represent the first clear documentation of a spatial correlation between allocation to any type of caste and a biotic selective agent.


Asunto(s)
Parásitos , Trematodos , Animales , Conducta Animal , Reproducción , Caracoles
16.
J Anim Ecol ; 89(2): 323-333, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31671206

RESUMEN

The hypothesis that biotic interactions are stronger at lower relative to higher latitudes has a rich history, drawing from ecological and evolutionary theory. While this hypothesis suggests that stronger interactions at lower latitudes may contribute to the maintenance of contemporary patterns of diversity, there remain few standardized biogeographic comparisons of community effects of species interactions. Using marine seagrasses as a focal ecosystem of conservation importance and sessile marine invertebrates as model prey, we tested the hypothesis that predation is stronger at lower latitudes and can shape contemporary patterns of prey diversity. To further advance understanding beyond prior studies, we also explored mechanisms that likely underlie a change in interaction outcomes with latitude. Multiple observational and experimental approaches were employed to test for effects of predators, and the mechanisms that may underlie these effects, in seagrass ecosystems of the western Atlantic Ocean spanning 30° of latitude from the temperate zone to the tropics. In predator exclusion experiments conducted in a temperate and a tropical region, predation decreased sessile invertebrate abundance, richness and diversity on both natural and standardized artificial seagrass at tropical but not temperate sites. Further, predation reduced invertebrate richness at both local and regional scales in the tropics. Additional experiments demonstrated that predation reduced invertebrate recruitment in the tropics but not the temperate zone. Finally, direct observations of predators showed higher but variable consumption rates on invertebrates at tropical relative to temperate latitudes. Together, these results demonstrate that strong predation in the tropics can have consequential impacts on prey communities through discrete effects on early life stages as well as longer-term cumulative effects on community structure and diversity. Our detailed experiments also provide some of the first data linking large-scale biogeographic patterns, community-scale interaction outcomes and direct observation of predators in the temperate zone and tropics. Therefore, our results support the hypothesis that predation is stronger in the tropics, but also elucidate some of the causes and consequences of this variation in shaping contemporary patterns of diversity.


Asunto(s)
Ecosistema , Invertebrados , Animales , Organismos Acuáticos , Océano Atlántico , Conducta Predatoria
17.
J Biogeogr ; 47(11): 2532-2542, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38269398

RESUMEN

Aim: Genetic structure has proven difficult to predict for marine and estuarine species with multi-day pelagic larval durations, since many disperse far less than expected based on passive transport models. In such cases, the gap between potential and realized dispersal may result from larval behaviours that evolved to facilitate retention and settlement in favourable environments. Behaviour is predicted to play a particularly key role in structuring truly estuarine species, which often moderate their behaviour to remain within their natal estuaries. In such systems, this restricted dispersal may lead to high divergence, local adaptation and eventual speciation across their range. Here, we test whether a geographically widespread estuarine crab, known to have behaviour promoting larval retention, exhibits high population structure despite a 2- to 4-week larval duration. Location: Atlantic and Gulf Coasts of North America. Taxon: White-fingered mud crab, Rhithropanopeus harrisii. Methods: Population genomic analyses across nine estuaries from New Hampshire to Louisiana using 12,638 transcriptome-derived SNPs. Results: We found highly differentiated genetic signatures among all nine estuaries, separated by 200-5,000 km of coastline. Estimates of gene flow suggest that migration is low and largely symmetrical between sites. We also observed deep phylogenetic divides corresponding to major biogeographical breaks. Main conclusions: These results indicate substantial and longstanding constraints to dispersal in the species' native range, likely arising from the emergence of geological and oceanographic barriers and sustained by behaviour that promotes estuarine retention during larval development. This work supports the idea that larval behaviour promoting estuarine retention can be reflected in substantial genetic structure even in species with multi-week pelagic larval durations. Such behaviour-restricted dispersal has implications for predicting adaptation and spread in estuarine species, many of which have been introduced outside their native ranges.

18.
Evol Appl ; 12(7): 1385-1401, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31417622

RESUMEN

Human activities are dramatically altering ecosystems worldwide, often resulting in shifts in selection regimes. In response, natural populations sometimes undergo rapid phenotypic changes, which, if adaptive, can increase their probability of persistence. However, in many instances, populations fail to undergo any phenotypic change, which might indicate a variety of possibilities, including maladaptation. In freshwater ecosystems, the impoundment of rivers and the introduction of exotic species are among the leading threats to native fishes. We examined how the construction of the Panama Canal, which formed Lake Gatun, and the subsequent invasion of the predatory Cichla monoculus influenced the morphology of two native fishes: Astyanax ruberrimus and Roeboides spp. Using a 100-year time series, we studied variation in overall body shape over time (before vs. after impoundment and invasion) as well as across space (between an invaded and an uninvaded reservoir). In addition, we examined variation in linear morphological traits associated with swim performance and predator detection/avoidance. Notwithstanding a few significant changes in particular traits in particular comparisons, we found only limited evidence for morphological change associated with these two stressors. Most observed changes were subtle, and tended to be site- and species-specific. The lack of a strong morphological response to these stressors, coupled with dramatic population declines in both species, suggests they may be maladapted to the anthropogenically perturbed environment of Lake Gatun, but direct measures of fitness would be needed to test this. In general, our results suggest that morphological responses to anthropogenic disturbances can be very limited and, when they do occur, are often complex and context-dependent.

19.
Ecology ; 100(4): e02617, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30933358

RESUMEN

Marine protected areas (MPAs) have grown exponentially, emerging as a widespread tool to conserve biodiversity and enhance fisheries production. Although numerous empirical studies and global syntheses have evaluated the effects of MPAs on community structure (e.g., biodiversity), no broad assessment concerning their capacity to influence ecological processes (e.g., species interactions) exists. Here, we present meta-analyses that compare rates of predation and herbivory on a combined 32 species across 30 MPAs spanning 85° of latitude. Our analyses synthesize the fate of 15,225 field experiment assays, and demonstrate that MPAs greatly increased predation intensity on animals but not herbivory on macroalgae or seagrass. Predation risk, quantified as the odds of prey being eaten, was largely determined by predator abundance and biomass within reserves. At MPAs with the greatest predator accumulation, the odds of predation increased to nearly 49:1, as opposed to 1:1 at MPAs where predators actually declined. Surprisingly, we also found evidence that predation risk declined with increased sea-surface temperature. Greater predation risk within MPAs was consistent with predator and prey population abundance estimates, where predators increased 4.4-fold within MPAs, whereas prey decreased 2.2-fold. For herbivory, the lack of change may have been driven by functional redundancy and the inability of reserves to increase herbivore abundance relative to fished zones in our sample. Overall, this work highlights the capacity of MPAs to restore a critical ecosystem function such as predation, which mediates energy flows and community assembly within natural systems. However, our review of the literature also uncovers relatively few studies that have quantified the effects of MPAs on ecosystem function, highlighting a key gap in our understanding of how protected areas may alter ecological processes and deliver ecosystem services. From a historical perspective, these findings suggest that modern levels of predation in the coastal oceans may currently only be a fraction of the baseline prior to human exploitation.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Explotaciones Pesqueras , Peces , Océanos y Mares
20.
Parasitology ; 146(7): 928-936, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30859923

RESUMEN

Pathogens are increasingly implicated in amphibian declines but less is known about parasites and the role they play. We focused on a genus of nematodes (Rhabdias) that is widespread in amphibians and examined their genetic diversity, abundance (prevalence and intensity), and impact in a common toad (Rhinella horribilis) in Panama. Our molecular data show that toads were infected by at least four lineages of Rhabdias, most likely Rhabdias pseudosphaerocephala, and multiple lineages were present in the same geographic locality, the same host and even the same lung. Mean prevalence of infection per site was 63% and mean intensity of infection was 31 worms. There was a significant effect of host size on infection status in the wild: larger toads were more likely to be infected than were smaller conspecifics. Our experimental infections showed that toadlets that were penetrated by many infective Rhabdias larvae grew less than those who were penetrated by few larvae. Exposure to Rhabdias reduced toadlet locomotor performance (both sustained speed and endurance) but did not influence toadlet survival. The effects of Rhabdias infection on their host appear to be primarily sublethal, however, dose-dependent reduction in growth and an overall impaired locomotor performance still represents a significant reduction in host fitness.


Asunto(s)
Bufo bufo/parasitología , Pulmón/parasitología , Rhabdiasoidea/genética , Animales , Bufo bufo/crecimiento & desarrollo , Femenino , Variación Genética , Locomoción , Pulmón/patología , Masculino , Panamá , Recuento de Huevos de Parásitos , Prevalencia , Rhabdiasoidea/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...