Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 22(23): 5821-34, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24112610

RESUMEN

Understanding connectivity of coral populations among and within reefs over ecologically significant timescales is essential for developing evidence-based management strategies, including the design of marineprotected areas. Here, we present the first assessment of contemporary connectivity among populations of two Molecular Operational Taxonomic Units (MOTUs) of the brooding coral Pocillopora damicornis. We used individual-based genetic assignment methods to identify the proportions of philopatric and migrant larval recruits, settling over 12 months at sites around Lizard Island (northern Great Barrier Reef [GBR]) and over 24 months at sites around the Palms Islands (central GBR). Overall, we found spatially and temporally variable rates of self-recruitment and dispersal, demonstrating the importance of variation in local physical characteristics in driving dispersal processes. Recruitment patterns and inferred dispersal distances differed between the two P. damicornis MOTUs, with type α recruits exhibiting predominantly philopatric recruitment, while the majority of type ß recruits were either migrants from identified putative source populations or assumed migrants based on genetic exclusion from all known populations. While P. damicornis invests much energy into brooding clonal larvae, we found that only 15% and 7% of type α and type ß recruits, respectively, were clones of sampled adult colonies or other recruits, challenging the hypothesis that reproduction is predominantly asexual in this species on the GBR. We explain high rates of self-recruitment and low rates of clonality in these MOTUs by suggesting that locally retained larvae originate predominantly from spawned gametes, while brooded larvae are mainly vagabonds.


Asunto(s)
Distribución Animal , Antozoos/genética , Genética de Población/métodos , Animales , Australia , Ecosistema , Genotipo , Islas , Larva/genética , Repeticiones de Microsatélite , Densidad de Población , Análisis Espacio-Temporal
2.
Mol Ecol ; 22(23): 5805-20, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24112642

RESUMEN

Understanding levels of connectivity among scleractinian coral populations over a range of temporal and spatial scales is vital for managing tropical coral reef ecosystems. Here, we use multilocus microsatellite genotypes to assess the spatial genetic structure of two molecular operational taxonomic units (MOTUs, types α and ß) of the widespread coral Pocillopora damicornis on the Great Barrier Reef (GBR) and infer the extent of connectivity on spatial scales spanning from local habitat types to latitudinal sectors of the GBR. We found high genetic similarities over large spatial scales spanning > 1000 km from the northern to the southern GBR, but also strong genetic differentiation at local scales in both MOTUs. The presence of a considerable number of first-generation migrants within the populations sampled (12% and 27% for types α and ß, respectively) suggests that genetic differentiation over small spatial scales is probably a consequence of stochastic recruitment from different genetic pools into recently opened up spaces on the reef, for example, following major disturbance events. We explain high genetic similarity among populations over hundreds of kilometres by long competency periods of brooded zooxanthellate larvae and multiple larval release events each year, combined with strong longshore currents typical along the GBR. The lack of genetic evidence for predominantly clonal reproduction in adult populations of P. damicornis, which broods predominantly asexually produced larvae, further undermines the paradigm that brooded larvae settle close to parent colonies shortly after the release.


Asunto(s)
Antozoos/genética , Genética de Población , Distribución Animal , Animales , Australia , Ecosistema , Genotipo , Repeticiones de Microsatélite , Tipificación de Secuencias Multilocus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA