Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
iScience ; 26(7): 107171, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37456840

RESUMEN

The human genome comprises approximately 3% of tandem repeats with variable length (VNTR), a few of which have been linked to human rare diseases. Autosomal dominant tubulointerstitial kidney disease-MUC1 (ADTKD-MUC1) is caused by specific frameshift variants in the coding VNTR of the MUC1 gene. Calling variants from VNTR using short-read sequencing (SRS) is challenging due to poor read mappability. We developed a computational pipeline, VNtyper, for reliable detection of MUC1 VNTR pathogenic variants and demonstrated its clinical utility in two distinct cohorts: (1) a historical cohort including 108 families with ADTKD and (2) a replication naive cohort comprising 2,910 patients previously tested on a panel of genes involved in monogenic renal diseases. In the historical cohort all cases known to carry pathogenic MUC1 variants were re-identified, and a new 25bp-frameshift insertion in an additional mislaid family was detected. In the replication cohort, we discovered and validated 30 new patients.

3.
Nat Commun ; 13(1): 3507, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717442

RESUMEN

Gephyrin (GPHN) regulates the clustering of postsynaptic components at inhibitory synapses and is involved in pathophysiology of neuropsychiatric disorders. Here, we uncover an extensive diversity of GPHN transcripts that are tightly controlled by splicing during mouse and human brain development. Proteomic analysis reveals at least a hundred isoforms of GPHN incorporated at inhibitory Glycine and gamma-aminobutyric acid A receptors containing synapses. They exhibit different localization and postsynaptic clustering properties, and altering the expression level of one isoform is sufficient to affect the number, size, and density of inhibitory synapses in cerebellar Purkinje cells. Furthermore, we discovered that splicing defects reported in neuropsychiatric disorders are carried by multiple alternative GPHN transcripts, demonstrating the need for a thorough analysis of the GPHN transcriptome in patients. Overall, we show that alternative splicing of GPHN is an important genetic variation to consider in neurological diseases and a determinant of the diversity of postsynaptic inhibitory synapses.


Asunto(s)
Proteínas Portadoras , Proteómica , Proteínas Portadoras/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/genética , Sinapsis/metabolismo
4.
J Clin Immunol ; 42(3): 559-571, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35000057

RESUMEN

PURPOSE: X-linked inhibitor of apoptosis protein (XIAP) deficiency, also known as the X-linked lymphoproliferative syndrome of type 2 (XLP-2), is a rare immunodeficiency characterized by recurrent hemophagocytic lymphohistiocytosis, splenomegaly, and inflammatory bowel disease. Variants in XIAP including missense, non-sense, frameshift, and deletions of coding exons have been reported to cause XIAP deficiency. We studied three young boys with immunodeficiency displaying XLP-2-like clinical features. No genetic variation in the coding exons of XIAP was identified by whole-exome sequencing (WES), although the patients exhibited a complete loss of XIAP expression. METHODS: Targeted next-generation sequencing (NGS) of the entire locus of XIAP was performed on DNA samples from the three patients. Molecular investigations were assessed by gene reporter expression assays in HEK cells and CRISPR-Cas9 genome editing in primary T cells. RESULTS: NGS of XIAP identified three distinct non-coding deletions in the patients that were predicted to be driven by repetitive DNA sequences. These deletions share a common region of 839 bp that encompassed the first non-coding exon of XIAP and contained regulatory elements and marks specific of an active promoter. Moreover, we showed that among the 839 bp, the exon was transcriptionally active. Finally, deletion of the exon by CRISPR-Cas9 in primary cells reduced XIAP protein expression. CONCLUSIONS: These results identify a key promoter sequence contained in the first non-coding exon of XIAP. Importantly, this study highlights that sequencing of the non-coding exons that are not currently captured by WES should be considered in the genetic diagnosis when no variation is found in coding exons.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Trastornos Linfoproliferativos , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Células Germinativas/metabolismo , Humanos , Trastornos Linfoproliferativos/diagnóstico , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/metabolismo , Masculino , Proteína Inhibidora de la Apoptosis Ligada a X
5.
Nat Commun ; 12(1): 5044, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413298

RESUMEN

Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes. Here, we identify diverse mosaic somatic genetic events (point mutations, interstitial deletion, reciprocal chromosomal translocation) in SDS hematopoietic cells that reduce eIF6 expression or disrupt its interaction with the 60S subunit, thereby conferring a selective advantage over non-modified cells. SDS-related somatic EIF6 missense mutations that reduce eIF6 dosage or eIF6 binding to the 60S subunit suppress the defects in ribosome assembly and protein synthesis across multiple SBDS-deficient species including yeast, Dictyostelium and Drosophila. Our data suggest that SGR is a universal phenomenon that may influence the clinical evolution of diverse Mendelian disorders and support eIF6 suppressor mimics as a therapeutic strategy in SDS.


Asunto(s)
Mutación , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/genética , Ribosomas/patología , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/patología , Adolescente , Adulto , Animales , Fenómenos Biológicos , Células Cultivadas , Niño , Preescolar , Dictyostelium , Drosophila , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Células Germinativas , Humanos , Lactante , Simulación de Dinámica Molecular , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Proteínas/genética , Proteínas/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido , Síndrome de Shwachman-Diamond/metabolismo , Adulto Joven
6.
Mol Biol Evol ; 37(12): 3453-3468, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-32658962

RESUMEN

Transmission distorters (TDs) are genetic elements that favor their own transmission to the detriments of others. Slx/Slxl1 (Sycp3-like-X-linked and Slx-like1) and Sly (Sycp3-like-Y-linked) are TDs, which have been coamplified on the X and Y chromosomes of Mus species. They are involved in an intragenomic conflict in which each favors its own transmission, resulting in sex ratio distortion of the progeny when Slx/Slxl1 versus Sly copy number is unbalanced. They are specifically expressed in male postmeiotic gametes (spermatids) and have opposite effects on gene expression: Sly knockdown leads to the upregulation of hundreds of spermatid-expressed genes, whereas Slx/Slxl1-deficiency downregulates them. When both Slx/Slxl1 and Sly are knocked down, sex ratio distortion and gene deregulation are corrected. Slx/Slxl1 and Sly are, therefore, in competition but the molecular mechanism remains unknown. By comparing their chromatin-binding profiles and protein partners, we show that SLX/SLXL1 and SLY proteins compete for interaction with H3K4me3-reader SSTY1 (Spermiogenesis-specific-transcript-on-the-Y1) at the promoter of thousands of genes to drive their expression, and that the opposite effect they have on gene expression is mediated by different abilities to recruit SMRT/N-Cor transcriptional complex. Their target genes are predominantly spermatid-specific multicopy genes encoded by the sex chromosomes and the autosomal Speer/Takusan. Many of them have coamplified with not only Slx/Slxl1/Sly but also Ssty during muroid rodent evolution. Overall, we identify Ssty as a key element of the X versus Y intragenomic conflict, which may have influenced gene content and hybrid sterility beyond Mus lineage since Ssty amplification on the Y predated that of Slx/Slxl1/Sly.


Asunto(s)
Evolución Biológica , Proteínas Nucleares/genética , Proteínas/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Masculino , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Proteínas/metabolismo , Espermátides/metabolismo , Sitio de Iniciación de la Transcripción
7.
Cell Discov ; 4: 61, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30455981

RESUMEN

A loss-of-function mutation in tetratricopeptide repeat domain 7A (TTC7A) is a recently identified cause of human intestinal and immune disorders. However, clues to related underlying molecular dysfunctions remain elusive. It is now shown based on the study of TTC7A-deficient and wild-type cells that TTC7A is an essential nuclear protein. It binds to chromatin, preferentially at actively transcribed regions. Its depletion results in broad range of epigenomic changes at proximal and distal transcriptional regulatory elements and in altered control of the transcriptional program. Loss of WT_TTC7A induces general decrease in chromatin compaction, unbalanced cellular distribution of histones, higher nucleosome accessibility to nuclease digestion along with genome instability, and reduced cell viability. Our observations characterize for the first time unreported functions for TTC7A in the nucleus that exert a critical role in chromatin organization and gene regulation to safeguard healthy immune and intestinal status.

8.
EMBO Mol Med ; 10(12)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30446499

RESUMEN

The genetic causes of congenital hypothyroidism due to thyroid dysgenesis (TD) remain largely unknown. We identified three novel TUBB1 gene mutations that co-segregated with TD in three distinct families leading to 1.1% of TUBB1 mutations in TD study cohort. TUBB1 (Tubulin, Beta 1 Class VI) encodes for a member of the ß-tubulin protein family. TUBB1 gene is expressed in the developing and adult thyroid in humans and mice. All three TUBB1 mutations lead to non-functional α/ß-tubulin dimers that cannot be incorporated into microtubules. In mice, Tubb1 knock-out disrupted microtubule integrity by preventing ß1-tubulin incorporation and impaired thyroid migration and thyroid hormone secretion. In addition, TUBB1 mutations caused the formation of macroplatelets and hyperaggregation of human platelets after stimulation by low doses of agonists. Our data highlight unexpected roles for ß1-tubulin in thyroid development and in platelet physiology. Finally, these findings expand the spectrum of the rare paediatric diseases related to mutations in tubulin-coding genes and provide new insights into the genetic background and mechanisms involved in congenital hypothyroidism and thyroid dysgenesis.


Asunto(s)
Plaquetas/citología , Plaquetas/patología , Mutación , Agregación Plaquetaria , Disgenesias Tiroideas/genética , Tubulina (Proteína)/genética , Animales , Humanos , Ratones , Ratones Noqueados , Disgenesias Tiroideas/patología
9.
J Clin Immunol ; 38(5): 617-627, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29995221

RESUMEN

PURPOSE: Inborn errors of IFN-γ immunity underlie Mendelian susceptibility to mycobacterial disease (MSMD). Autosomal recessive complete IL-12Rß1 deficiency is the most frequent genetic etiology of MSMD. Only two of the 84 known mutations are copy number variations (CNVs), identified in two of the 213 IL-12Rß1-deficient patients and two of the 164 kindreds reported. These two CNVs are large deletions found in the heterozygous or homozygous state. We searched for novel families with IL-12Rß1 deficiency due to CNVs. METHODS: We studied six MSMD patients from five unrelated kindreds displaying adverse reactions to BCG vaccination. Three of the patients also presented systemic salmonellosis, two had mucocutaneous candidiasis, and one had disseminated histoplasmosis. We searched for CNVs and other variations by IL12RB1-targeted next-generation sequencing (NGS). RESULTS: We identified six new IL-12Rß1-deficient patients with a complete loss of IL-12Rß1 expression on phytohemagglutinin-activated T cells and/or EBV-transformed B cells. The cells of these patients did not respond to IL-12 and IL-23. Five different CNVs encompassing IL12RB1 (four deletions and one duplication) were identified in these patients by NGS coverage analysis, either in the homozygous state (n = 1) or in trans (n = 4) with a single-nucleotide variation (n = 3) or a small indel (n = 1). Seven of the nine mutations are novel. Interestingly, four of the five CNVs were predicted to be driven by nearby Alu elements, as well as the two previously reported large deletions. The IL12RB1 locus is actually enriched in Alu elements (44.7%), when compared with the rest of the genome (10.5%). CONCLUSION: The IL12RB1 locus is Alu-enriched and therefore prone to rearrangements at various positions. CNVs should be considered in the genetic diagnosis of IL-12Rß1 deficiency.


Asunto(s)
Elementos Alu , Variaciones en el Número de Copia de ADN , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Sudunidad beta 1 del Receptor de Interleucina-12/deficiencia , Alelos , Secuencia de Bases , Mapeo Cromosómico , Femenino , Expresión Génica , Humanos , Interferón gamma , Masculino , Mutación , Infecciones por Mycobacterium/diagnóstico , Infecciones por Mycobacterium/etiología , Infecciones por Mycobacterium/metabolismo , Linaje , Fenotipo
10.
Am J Hum Genet ; 101(5): 803-814, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100091

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute a major cause of chronic kidney disease in children and 20% of prenatally detected anomalies. CAKUT encompass a spectrum of developmental kidney defects, including renal agenesis, hypoplasia, and cystic and non-cystic dysplasia. More than 50 genes have been reported as mutated in CAKUT-affected case subjects. However, the pathophysiological mechanisms leading to bilateral kidney agenesis (BKA) remain largely elusive. Whole-exome or targeted exome sequencing of 183 unrelated familial and/or severe CAKUT-affected case subjects, including 54 fetuses with BKA, led to the identification of 16 heterozygous variants in GREB1L (growth regulation by estrogen in breast cancer 1-like), a gene reported as a target of retinoic acid signaling. Four loss-of-function and 12 damaging missense variants, 14 being absent from GnomAD, were identified. Twelve of them were present in familial or simplex BKA-affected case subjects. Female BKA-affected fetuses also displayed uterus agenesis. We demonstrated a significant association between GREB1L variants and BKA. By in situ hybridization, we showed expression of Greb1l in the nephrogenic zone in developing mouse kidney. We generated a Greb1l knock-out mouse model by CRISPR-Cas9. Analysis at E13.5 revealed lack of kidneys and genital tract anomalies in male and female Greb1l-/- embryos and a slight decrease in ureteric bud branching in Greb1l+/- embryos. We showed that Greb1l invalidation in mIMCD3 cells affected tubulomorphogenesis in 3D-collagen culture, a phenotype rescued by expression of the wild-type human protein. This demonstrates that GREB1L plays a major role in early metanephros and genital development in mice and humans.


Asunto(s)
Anomalías Congénitas/genética , Enfermedades Renales/congénito , Riñón/anomalías , Mutación/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Animales , Niño , Exoma/genética , Femenino , Feto/anomalías , Heterocigoto , Humanos , Enfermedades Renales/genética , Masculino , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Sistema Urinario/anomalías , Anomalías Urogenitales/genética
11.
J Am Soc Nephrol ; 28(10): 2901-2914, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28566479

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) occur in three to six of 1000 live births, represent about 20% of the prenatally detected anomalies, and constitute the main cause of CKD in children. These disorders are phenotypically and genetically heterogeneous. Monogenic causes of CAKUT in humans and mice have been identified. However, despite high-throughput sequencing studies, the cause of the disease remains unknown in most patients, and several studies support more complex inheritance and the role of environmental factors and/or epigenetics in the pathophysiology of CAKUT. Here, we report the targeted exome sequencing of 330 genes, including genes known to be involved in CAKUT and candidate genes, in a cohort of 204 unrelated patients with CAKUT; 45% of the patients were severe fetal cases. We identified pathogenic mutations in 36 of 204 (17.6%) patients. These mutations included five de novo heterozygous loss of function mutations/deletions in the PBX homeobox 1 gene (PBX1), a gene known to have a crucial role in kidney development. In contrast, the frequency of SOX17 and DSTYK variants recently reported as pathogenic in CAKUT did not indicate causality. These findings suggest that PBX1 is involved in monogenic CAKUT in humans and call into question the role of some gene variants recently reported as pathogenic in CAKUT. Targeted exome sequencing also proved to be an efficient and cost-effective strategy to identify pathogenic mutations and deletions in known CAKUT genes.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas Proto-Oncogénicas/genética , Anomalías Urogenitales/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Exoma , Femenino , Humanos , Masculino , Factor de Transcripción 1 de la Leucemia de Células Pre-B
12.
Cell Death Differ ; 24(6): 1029-1044, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28475176

RESUMEN

Sperm differentiation requires unique transcriptional regulation and chromatin remodeling after meiosis to ensure proper compaction and protection of the paternal genome. Abnormal sperm chromatin remodeling can induce sperm DNA damage, embryo lethality and male infertility, yet, little is known about the factors which regulate this process. Deficiency in Sly, a mouse Y chromosome-encoded gene expressed only in postmeiotic male germ cells, has been shown to result in the deregulation of hundreds of sex chromosome-encoded genes associated with multiple sperm differentiation defects and subsequent male infertility. The underlying mechanism remained, to date, unknown. Here, we show that SLY binds to the promoter of sex chromosome-encoded and autosomal genes highly expressed postmeiotically and involved in chromatin regulation. Specifically, we demonstrate that Sly knockdown directly induces the deregulation of sex chromosome-encoded H2A variants and of the H3K79 methyltransferase DOT1L. The modifications prompted by loss of Sly alter the postmeiotic chromatin structure and ultimately result in abnormal sperm chromatin remodeling with negative consequences on the sperm genome integrity. Altogether our results show that SLY is a regulator of sperm chromatin remodeling. Finally we identified that SMRT/N-CoR repressor complex is involved in gene regulation during sperm differentiation since members of this complex, in particular TBL1XR1, interact with SLY in postmeiotic male germ cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Cromosomas Sexuales/metabolismo , Espermatozoides/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Animales , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Cromosomas Sexuales/genética , Espermatogénesis , Espermatozoides/fisiología
13.
J Med Genet ; 54(5): 324-329, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28069933

RESUMEN

BACKGROUND: While mitochondrial DNA (mtDNA) copy number is strictly regulated during differentiation and according to cell type, very little is known regarding the mechanism which accurately controls mtDNA copy number in human. Exon 2 of the human POLG gene, encoding the catalytic subunit of the mitochondrial-specific DNA polymerase gamma, contains a CpG island, highly conserved in mice and human. Changes of DNA methylation at the POLG locus have been shown to modulate mtDNA copy number during cell differentiation in both mouse and human. METHODS: We have investigated the epigenetic modification of the POLG gene, by assessing the methylation level of its exon 2 using deep-Next Generation Sequencing analysis of bisulfite-treated DNA. Analysis were performed on various tissues at either postnatal or prenatal stages, on samples from carriers of mtDNA mutations, patients carrying two loss-of-function POLG mutations and controls. RESULTS: Very high methylation levels at POLG exon 2 were found (94±3%) and no variation was observed according to either developmental stage or tissue of origin, except for sperm samples for which lower methylation levels were found (80%). This high level of methylation was neither correlated with the presence of mtDNA mutations (94±1% of methylated alleles), nor with biallelic POLG mutations (93%±2%), even in tissues where a mtDNA depletion had been observed. CONCLUSIONS: This study suggests that, at variance with mouse and un/de-differentiated human cells, differentiated human cells control mtDNA levels irrespective of POLG methylation. The factors which actually control the mtDNA levels in such cell types remain to be identified.


Asunto(s)
Diferenciación Celular/genética , Islas de CpG/genética , Metilación de ADN/genética , ADN Polimerasa gamma/genética , ADN Mitocondrial/genética , Exones/genética , Mutación/genética , Adolescente , Adulto , Animales , Secuencia de Bases , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Ratones , Persona de Mediana Edad , Embarazo , Adulto Joven
14.
Artículo en Inglés | MEDLINE | ID: mdl-27795737

RESUMEN

BACKGROUND: During meiosis, the X and Y chromosomes are transcriptionally silenced. The persistence of repressive chromatin marks on the sex chromatin after meiosis initially led to the assumption that XY gene silencing persists to some extent in spermatids. Considering the many reports of XY-linked genes expressed and needed in the post-meiotic phase of mouse spermatogenesis, it is still unclear whether or not the mouse sex chromatin is a repressive or permissive environment, after meiosis. RESULTS: To determine the transcriptional and chromatin state of the sex chromosomes after meiosis, we re-analyzed ten ChIP-Seq datasets performed on mouse round spermatids and four RNA-seq datasets from male germ cells purified at different stages of spermatogenesis. For this, we used the last version of the genome (mm10/GRCm38) and included reads that map to several genomic locations in order to properly interpret the high proportion of sex chromosome-encoded multicopy genes. Our study shows that coverage of active epigenetic marks H3K4me3 and Kcr is similar on the sex chromosomes and on autosomes. The post-meiotic sex chromatin nevertheless differs from autosomal chromatin in its enrichment in H3K9me3 and its depletion in H3K27me3 and H4 acetylation. We also identified a posttranslational modification, H3K27ac, which specifically accumulates on the Y chromosome. In parallel, we found that the X and Y chromosomes are enriched in genes expressed post-meiotically and display a higher proportion of spermatid-specific genes compared to autosomes. Finally, we observed that portions of chromosome 14 and of the sex chromosomes share specific features, such as enrichment in H3K9me3 and the presence of multicopy genes that are specifically expressed in round spermatids, suggesting that parts of chromosome 14 are under the same evolutionary constraints than the sex chromosomes. CONCLUSIONS: Based on our expression and epigenomic studies, we conclude that, after meiosis, the mouse sex chromosomes are no longer silenced but are nevertheless regulated differently than autosomes and accumulate different chromatin marks. We propose that post-meiotic selective constraints are at the basis of the enrichment of spermatid-specific genes and of the peculiar chromatin composition of the sex chromosomes and of parts of chromosome 14.


Asunto(s)
Epigenómica , Cromosomas Sexuales/genética , Animales , Cromatina/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/metabolismo , Masculino , Meiosis , Ratones , Microscopía Fluorescente , Análisis de Secuencia de ARN , Cromosomas Sexuales/metabolismo , Espermátides/metabolismo , Espermatogénesis , Cromosoma X/genética , Cromosoma X/metabolismo , Cromosoma Y/genética , Cromosoma Y/metabolismo
15.
Ann Intensive Care ; 6(1): 28, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27059500

RESUMEN

BACKGROUND: cRel, a subunit of NF-κB, is implicated in the inflammatory response observed in autoimmune disease. Hence, knocked-out mice for cRel had a significantly higher mortality, providing new and important functions of cRel in the physiopathology of septic shock. Whether genetic variants in the human REL gene are associated with severity of septic shock is unknown. METHODS: We genotyped a population of 1040 ICU patients with septic shock and 855 ICU controls for two known polymorphisms of REL; REL rs842647 and REL rs13031237. Outcome of patients according to the presence of REL variant alleles was compared. RESULTS: The distribution of REL variant alleles was not significantly different between patients and controls. Among the septic shock group, REL rs13031237*T minor allele was not associated with worse outcome. In contrast, REL rs842647*G minor allele was significantly associated with more multi-organ failure and early death [OR 1.4; 95 % CI (1.02-1.8)]. CONCLUSION: In a large ICU population, we report a significant clinical association between a variation in the human REL gene and severity and mortality of septic shock, suggesting for the first time a new insight into the role of cRel in response to infection in humans.

16.
Gut ; 65(6): 1024-34, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-25792709

RESUMEN

OBJECTIVE: Hepatocellular carcinoma (HCC) is the most prevalent primary tumour of the liver. About a third of these tumours presents activating mutations of the ß-catenin gene. The molecular pathogenesis of HCC has been elucidated, but mortality remains high, and new therapeutic approaches, including treatments based on microRNAs, are required. We aimed to identify candidate microRNAs, regulated by ß-catenin, potentially involved in liver tumorigenesis. DESIGN: We used a mouse model, in which ß-catenin signalling was overactivated exclusively in the liver by the tamoxifen-inducible and Cre-Lox-mediated inactivation of the Apc gene. This model develops tumours with properties similar to human HCC. RESULTS: We found that miR-34a was regulated by ß-catenin, and significantly induced by the overactivation of ß-catenin signalling in mouse tumours and in patients with HCC. An inhibitor of miR-34a (locked nucleic acid, LNA-34a) exerted antiproliferative activity in primary cultures of hepatocyte. This inhibition of proliferation was associated with a decrease in cyclin D1 levels, orchestrated principally by HNF-4α, a target of miR-34a considered to act as a tumour suppressor in the liver. In vivo, LNA-34a approximately halved progression rates for tumours displaying ß-catenin activation together with an activation of caspases 2 and 3. CONCLUSIONS: This work demonstrates the key oncogenic role of miR-34a in liver tumours with ß-catenin gene mutations. We suggest that patients diagnosed with HCC with ß-catenin mutations could be treated with an inhibitor of miR-34a. The potential value of this strategy lies in the modulation of the tumour suppressor HNF-4α, which targets cyclin D1, and the induction of a proapoptotic programme.


Asunto(s)
Ciclina D1/genética , Neoplasias Hepáticas Experimentales/genética , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Mutación , beta Catenina/genética , Animales , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas Experimentales/terapia , Ratones
17.
Am J Hum Genet ; 94(2): 288-94, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24439109

RESUMEN

Renal hypodysplasia (RHD) is a heterogeneous condition encompassing a spectrum of kidney development defects including renal agenesis, hypoplasia, and (cystic) dysplasia. Heterozygous mutations of several genes have been identified as genetic causes of RHD with various severity. However, these genes and mutations are not associated with bilateral renal agenesis, except for RET mutations, which could be involved in a few cases. The pathophysiological mechanisms leading to total absence of kidney development thus remain largely elusive. By using a whole-exome sequencing approach in families with several fetuses with bilateral renal agenesis, we identified recessive mutations in the integrin α8-encoding gene ITGA8 in two families. Itga8 homozygous knockout in mice is known to result in absence of kidney development. We provide evidence of a damaging effect of the human ITGA8 mutations. These results demonstrate that mutations of ITGA8 are a genetic cause of bilateral renal agenesis and that, at least in some cases, bilateral renal agenesis is an autosomal-recessive disease.


Asunto(s)
Anomalías Congénitas/genética , Genes Recesivos , Cadenas alfa de Integrinas/genética , Enfermedades Renales/congénito , Riñón/anomalías , Anomalías Urogenitales/genética , Anomalías Congénitas/patología , Femenino , Feto/anomalías , Homocigoto , Humanos , Cadenas alfa de Integrinas/metabolismo , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Masculino , Mutación , Linaje , Anomalías Urogenitales/patología
18.
Am J Hum Genet ; 93(6): 1118-25, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24268655

RESUMEN

Auriculocondylar syndrome (ACS) is a rare craniofacial disorder with mandibular hypoplasia and question-mark ears (QMEs) as major features. QMEs, consisting of a specific defect at the lobe-helix junction, can also occur as an isolated anomaly. Studies in animal models have indicated the essential role of endothelin 1 (EDN1) signaling through the endothelin receptor type A (EDNRA) in patterning the mandibular portion of the first pharyngeal arch. Mutations in the genes coding for phospholipase C, beta 4 (PLCB4) and guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 3 (GNAI3), predicted to function as signal transducers downstream of EDNRA, have recently been reported in ACS. By whole-exome sequencing (WES), we identified a homozygous substitution in a furin cleavage site of the EDN1 proprotein in ACS-affected siblings born to consanguineous parents. WES of two cases with vertical transmission of isolated QMEs revealed a stop mutation in EDN1 in one family and a missense substitution of a highly conserved residue in the mature EDN1 peptide in the other. Targeted sequencing of EDN1 in an ACS individual with related parents identified a fourth, homozygous mutation falling close to the site of cleavage by endothelin-converting enzyme. The different modes of inheritance suggest that the degree of residual EDN1 activity differs depending on the mutation. These findings provide further support for the hypothesis that ACS and QMEs are uniquely caused by disruption of the EDN1-EDNRA signaling pathway.


Asunto(s)
Enfermedades del Oído/genética , Oído/anomalías , Genes Dominantes , Genes Recesivos , Mutación , Fenotipo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Análisis Mutacional de ADN , Enfermedades del Oído/diagnóstico , Enfermedades del Oído/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Femenino , Genotipo , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Alineación de Secuencia , Transducción de Señal
19.
Biol Psychiatry ; 70(9): 880-7, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21757185

RESUMEN

BACKGROUND: Autism is a severe developmental disorder, with strong genetic underpinnings. Previous genome-wide scans unveiled a linkage region spanning 3.5 Mb, located on human chromosome 3p25. This region encompasses the ATP2B2 gene, encoding the plasma membrane calcium-transporting ATPase 2 (PMCA2), which extrudes calcium (Ca2+) from the cytosol into the extracellular space. Multiple lines of evidence support excessive intracellular Ca2+ signaling in autism spectrum disorder (ASD), making ATP2B2 an attractive candidate gene. METHODS: We performed a family-based association study in an exploratory sample of 277 autism genetic resource exchange families and in a replication sample including 406 families primarily recruited in Italy. RESULTS: Several markers were significantly associated with ASD in the exploratory sample, and the same risk alleles at single nucleotide polymorphisms rs3774180, rs2278556, and rs241509 were found associated with ASD in the replication sample after correction for multiple testing. In both samples, the association was present in male subjects only. Markers associated with autism are all comprised within a single block of strong linkage disequilibrium spanning several exons, and the "risk" allele seems to follow a recessive mode of transmission. CONCLUSIONS: These results provide converging evidence for an association between ATP2B2 gene variants and autism in male subjects, spurring interest into the identification of functional variants, most likely involved in the homeostasis of Ca2+ signaling. Additional support comes from a recent genome-wide association study by the Autism Genome Project, which highlights the same linkage disequilibrium region of the gene.


Asunto(s)
Trastorno Autístico/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Algoritmos , Alelos , Replicación del ADN , Familia , Femenino , Genes Recesivos , Marcadores Genéticos , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Pruebas de Inteligencia , Italia , Desequilibrio de Ligamiento , Masculino , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Escalas de Valoración Psiquiátrica
20.
J Med Genet ; 48(7): 497-504, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21490379

RESUMEN

BACKGROUND: The RET/GDNF signalling pathway plays a crucial role during development of the kidneys and the enteric nervous system. In humans, RET activating mutations cause multiple endocrine neoplasia, whereas inactivating mutations are responsible for Hirschsprung disease. RET mutations have also been reported in fetuses with renal agenesis, based on analysis of a small series of samples. OBJECTIVE AND METHODS: To characterise better the involvement of RET and GDNF in kidney development defects, a series of 105 fetuses with bilateral defects, including renal agenesis, severe hypodysplasia or multicystic dysplastic kidney, was studied. RET and GDNF coding sequences, evolutionary conserved non-coding regions (ECRs) in promoters, 3'UTRs, and RET intron 1 were analysed. Copy number variations at these loci were also investigated. RESULTS: The study identified: (1) a low frequency (<7%) of potential mutations in the RET coding sequence, with inheritance from the healthy father for four of them; (2) no GDNF mutation; (3) similar allele frequencies in patients and controls for most single nucleotide polymorphism variants, except for RET intron 1 variant rs2506012 that was significantly more frequent in affected fetuses than in controls (6% vs 2%, p=0.01); (4) distribution of the few rare RET variants unidentified in controls into the various 5'-ECRs; (5) absence of copy number variations. CONCLUSION: These results suggest that genomic alteration of RET or GDNF is not a major mechanism leading to renal agenesis and other severe kidney development defects. Analysis of a larger series of patients will be necessary to validate the association of the RET intron 1 variant rs2506012 with renal development defects.


Asunto(s)
Anomalías Congénitas/genética , Feto/anomalías , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Enfermedades Renales/congénito , Enfermedades Renales/genética , Mutación/genética , Proteínas Proto-Oncogénicas c-ret/genética , Alelos , Variaciones en el Número de Copia de ADN , Regulación del Desarrollo de la Expresión Génica , Humanos , Riñón/anomalías , Sistemas de Lectura Abierta/genética , Polimorfismo de Nucleótido Simple/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...