Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 12(11)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182391

RESUMEN

In this research, piezoelectric polymer nanocomposite films were produced through solution mixing of laser-synthesized Au nanoparticles in poly (vinylidene fluoride) (PVDF) matrix. Synthetization of Au nanoparticles was carried out by laser ablation in N-methyle-2-pyrrolidene (NMP), and then it was added to PVDF: NMP solution with three different concentrations. Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were carried out in order to study the crystalline structure of the nanocomposite films. Results revealed that a remakable change in crystalline polymorph of PVDF has occurred by embedding Au nanoparticles into the polymer matrix. The polar phase fraction was greatly improved by increasing the loading content of Au nanoparticle. Thermogravimetric analysis (TGA) showed that the nanocomposite films are more resistant to high temperature and thermal degradation. An increment in dielectric constant was noticed by increasing the concentration of Au nanoparticles through capacitance, inductance, and resistance (LCR) measurement. Moreover, the mechanical properties of nanocomposites were numerically anticipated by a finite element based micromechanical model. The results reveal an enhancement in both tensile and shear moduli.

2.
J Nanosci Nanotechnol ; 12(4): 3115-22, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22849073

RESUMEN

Emission spectroscopy of the laser induced plasma is used to characterize the laser synthesis of silver nanoparticles in water via attributing the thermodynamic parameters of the plasma plume to qualitative features of the synthesized nanoparticles. In this approach, effects of the pulse energy and frequency of a pulsedNd:YAGlaser on nanoparticles synthesis yield and size distribution is studied by an analysis on the behavior of electron temperature and total density of the plasma dominant species (neutral Ag atoms; AgI). Variation of these thermodynamic parameters obtained from the time-integrated emission spectroscopy of the induced plasma was found to be in a closed correlation with the mentioned characteristics of the synthesized nanoparticles. Assessment of the qualitative features of nanoparticles was performed by evaluating the particles concentration in liquid, optical absorption spectroscopy and transmission electron microscopy. Finally, the optimum operating conditions for the synthesis of silver nanoparticles in pure water is determined by summarizing the results of emission spectroscopy observations attributed to the mentioned characteristics of synthesized nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA