Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Physiol ; 237(10): 3834-3844, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35908196

RESUMEN

Stressful life events are considered major risk factors for the development of several psychiatric disorders, though people differentially cope with stress. The reasons for this are still largely unknown but could be accounted for by individual genetic variants, previous life events, or the kind of stressors. The human brain-derived neurotrophic factor (BDNF) Val66Met variant, which was found to impair intracellular trafficking and activity-dependent secretion of BDNF, has been associated with increased susceptibility to develop several neuropsychiatric disorders, although there is still some controversial evidence. On the other hand, acute stress has been consistently demonstrated to promote the release of glutamate in cortico-limbic regions and altered glutamatergic transmission has been reported in psychiatric disorders. However, it is not known if the BDNF Val66Met single-nucleotide polymorphism (SNP) affects the stress-induced presynaptic glutamate release. In this study, we exposed adult male BDNFVal/Val and BDNFVal/Met knock-in mice to 30 min of acute restraint stress. Plasma corticosterone levels, glutamate release, protein, and gene expression in the hippocampus were analyzed immediately after the end of the stress session. Acute restraint stress similarly increased plasma corticosterone levels and nuclear glucocorticoid receptor levels and phosphorylation in both BDNFVal/Val and BDNFVal/Met mice. However, acute restraint stress induced higher increases in hippocampal presynaptic release of glutamate, phosphorylation of cAMP-response element binding protein (CREB), and levels of the immediate early gene c-fos of BDNFVal/Met compared to BFNFVal/Val mice. Moreover, acute restraint stress selectively increased phosphorylation levels of synapsin I at Ser9 and at Ser603 in BDNFVal/Val and BDNFVal/Met mice, respectively. In conclusion, we report here that the BDNF Val66Met SNP knock-in mice display an altered response to acute restraint stress in terms of hippocampal glutamate release, CREB phosphorylation, and neuronal activation, compared to wild-type animals. Taken together, these results could partially explain the enhanced vulnerability to stressful events of Met carriers reported in both preclinical and clinical studies.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ácido Glutámico , Animales , Masculino , Ratones , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corticosterona , Genotipo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Polimorfismo de Nucleótido Simple , Receptores de Glucocorticoides/genética , Estrés Fisiológico , Sinapsinas/genética , Sinapsinas/metabolismo
2.
Transl Neurodegener ; 11(1): 33, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35659112

RESUMEN

Most neurodegenerative disorders are diseases of protein homeostasis, with misfolded aggregates accumulating. The neurodegenerative process is mediated by numerous metabolic pathways, most of which lead to apoptosis. In recent years, hydrophilic bile acids, particularly tauroursodeoxycholic acid (TUDCA), have shown important anti-apoptotic and neuroprotective activities, with numerous experimental and clinical evidence suggesting their possible therapeutic use as disease-modifiers in neurodegenerative diseases. Experimental evidence on the mechanisms underlying TUDCA's neuroprotective action derives from animal models of Alzheimer's disease, Parkinson's disease, Huntington's diseases, amyotrophic lateral sclerosis (ALS) and cerebral ischemia. Preclinical studies indicate that TUDCA exerts its effects not only by regulating and inhibiting the apoptotic cascade, but also by reducing oxidative stress, protecting the mitochondria, producing an anti-neuroinflammatory action, and acting as a chemical chaperone to maintain the stability and correct folding of proteins. Furthermore, data from phase II clinical trials have shown TUDCA to be safe and a potential disease-modifier in ALS. ALS is the first neurodegenerative disease being treated with hydrophilic bile acids. While further clinical evidence is being accumulated for the other diseases, TUDCA stands as a promising treatment for neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Animales , Ácidos y Sales Biliares/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Ácido Tauroquenodesoxicólico/metabolismo , Ácido Tauroquenodesoxicólico/farmacología , Ácido Tauroquenodesoxicólico/uso terapéutico
3.
Front Pharmacol ; 13: 759626, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370690

RESUMEN

Stress represents a major risk factor for psychiatric disorders, including post-traumatic stress disorder (PTSD). Recently, we dissected the destabilizing effects of acute stress on the excitatory glutamate system in the prefrontal cortex (PFC). Here, we assessed the effects of single subanesthetic administration of ketamine (10 mg/kg) on glutamate transmission and dendritic arborization in the PFC of footshock (FS)-stressed rats, along with changes in depressive, anxious, and fear extinction behaviors. We found that ketamine, while inducing a mild increase of glutamate release in the PFC of naïve rats, blocked the acute stress-induced enhancement of glutamate release when administered 24 or 72 h before or 6 h after FS. Accordingly, the treatment with ketamine 6 h after FS also reduced the stress-dependent increase of spontaneous excitatory postsynaptic current (sEPSC) amplitude in prelimbic (PL)-PFC. At the same time, ketamine injection 6 h after FS was found to rescue apical dendritic retraction of pyramidal neurons induced by acute stress in PL-PFC and facilitated contextual fear extinction. These results show rapid effects of ketamine in animals subjected to acute FS, in line with previous studies suggesting a therapeutic action of the drug in PTSD models. Our data are consistent with a mechanism of ketamine involving re-establishment of synaptic homeostasis, through restoration of glutamate release, and structural remodeling of dendrites.

4.
J Neurol Neurosurg Psychiatry ; 93(5): 521-529, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35228271

RESUMEN

We analysed clinical trials of pharmacological interventions on patients with amyotrophic lateral sclerosis (ALS), and compared study quality and design features. The systematic review included articles published in PubMed and trials registered in ClinicalTrials.gov. Included studies were randomised double-blind placebo-controlled clinical trials assessing a disease-modifying pharmacological intervention. Studies were excluded if primary end points were safety or dose finding. A total of 28 735 articles and 721 current trials were identified. 76 published articles and 23 ongoing trials met inclusion criteria; they referred to distinct populations comprising 22 817 participants with ALS. Most articles and all current trials had parallel group design; few articles had cross-over design. A run-in observation period was included in about 20% of published studies and ongoing trials. Primary end points included functional assessment, survival, muscle strength, respiratory function, biomarkers and composite measures. Most recent trials had only functional assessment and survival. Risk of bias was high in 23 articles, moderate in 35, low in 18. A disease modification effect was observed for 10 interventions in phase II studies, two of which were confirmed in phase III. Three confirmatory phase III studies are currently underway. The present review provides cues for the design of future trials. Functional decline and survival, as single or composite measures, stand as the reference end points. Post hoc analyses should not be performed, particularly in studies using composite end points. There is a general agreement on diagnostic criteria; but eligibility criteria must be improved. Run-in observations may be used for censoring patients but are discouraged for refining participants' eligibility. The ALS Functional Rating Scale-Revised needs improvement for use as an ordinal measure of functional decline.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
5.
Neurobiol Stress ; 15: 100381, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34458512

RESUMEN

Converging clinical and preclinical evidence demonstrates that depressive phenotypes are associated with synaptic dysfunction and dendritic simplification in cortico-limbic glutamatergic areas. On the other hand, the rapid antidepressant effect of acute ketamine is consistently reported to occur together with the rescue of dendritic atrophy and reduction of spine number induced by chronic stress in the hippocampus and prefrontal cortex of animal models of depression. Nevertheless, the molecular mechanisms underlying these morphological alterations remain largely unknown. Here, we found that miR-9-5p levels were selectively reduced in the hippocampus of rats vulnerable to Chronic Mild Stress (CMS), while acute subanesthetic ketamine restored its levels to basal condition in just 24h; miR-9-5p expression inversely correlated with the anhedonic phenotype. A decrease of miR-9-5p was reproduced in an in vitro model of stress, based on primary hippocampal neurons incubated with the stress hormone corticosterone. In both CMS animals and primary neurons, decreased miR-9-5p levels were associated with dendritic simplification, while treatment with ketamine completely rescued the changes. In vitro modulation of miR-9-5p expression showed a direct role of miR-9-5p in regulating dendritic length and spine density in mature primary hippocampal neurons. Among the putative target genes tested, Rest and Sirt1 were validated as biological targets in primary neuronal cultures. Moreover, in line with miR-9-5p changes, REST protein expression levels were remarkably increased in both CMS vulnerable animals and corticosterone-treated neurons, while ketamine completely abolished this alteration. Finally, the shortening of dendritic length in corticosterone-treated neurons was shown to be partly rescued by miR-9-5p overexpression and dependent on REST protein expression. Overall, our data unveiled the functional role of miR-9-5p in the remodeling of dendritic arbor induced by stress/corticosterone in vulnerable animals and its rescue by acute antidepressant treatment with ketamine.

6.
Artículo en Inglés | MEDLINE | ID: mdl-32640261

RESUMEN

Converging clinical and preclinical evidence has shown that dysfunction of the glutamate system is a core feature of major depressive disorder. In this context, the N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has raised growing interest as fast acting antidepressant. Using the chronic mild stress (CMS) rat model of depression, performed in male rats, we aimed at analyzing whether hippocampal specific changes in subunit expression and regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or NMDA ionotropic receptors and in metabotropic glutamate receptors could be associated with behavioral vulnerability/resilience to CMS. We also assessed whether acute ketamine (10 mg/kg) was able to dampen the alterations in CMS vulnerable animals. Although chronic stress and ketamine had no effect on ionotropic glutamate receptors mRNAs (expression, RNA editing and splicing), we found selective modulations in their protein expression, phosphorylation and localization at synaptic membranes. AMPA GluA2 expression at synaptic membranes was significantly increased only in CMS resilient rats (although a trend was found also in vulnerable animals), while its phosphorylation at Ser880 was higher in both CMS resilient and vulnerable rats, a change partially dampened by ketamine. In the hippocampus from all stressed groups, despite NMDA receptor expression levels were reduced in total extract, the levels of GluN2B-containing NMDA receptors were remarkably increased in synaptic membranes. Finally, mGlu2 underwent a selective downregulation in stress vulnerable animals, which was completely restored by acute ketamine. Overall, these results are in line with a hypofunction of activity-dependent glutamatergic synaptic transmission induced by chronic stress exposure in all the animals, as suggested by the alterations of ionotropic glutamate receptors expression and localization at synaptic level. At the same time, the selective modulation of mGlu2 receptor, confirms its previously hypothesized functional role in regulating stress vulnerability and, for the first time here, suggests a mGlu2 involvement in the fast antidepressant effect of ketamine.


Asunto(s)
Hipocampo/metabolismo , Ketamina/farmacología , Receptores AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Estrés Psicológico/metabolismo , Animales , Enfermedad Crónica , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Receptores AMPA/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Estrés Psicológico/psicología
7.
Neurobiol Stress ; 10: 100160, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31193464

RESUMEN

Depression is a debilitating mental disease, characterized by persistent low mood and anhedonia. Stress represents a major environmental risk factor for depression; the complex interaction of stress with genetic factors results in different individual vulnerability or resilience to the disorder. Dysfunctions of the glutamate system have a primary role in depression. Clinical neuroimaging studies have consistently reported alterations in volume and connectivity of cortico-limbic areas, where glutamate neurons and synapses predominate. This is confirmed by preclinical studies in rodents, showing that repeated stress induces morphological and functional maladaptive changes in the same brain regions altered in humans. Confirming the key role of glutamatergic transmission in depression, compelling evidence has shown that the non-competitive NMDA receptor antagonist, ketamine, induces, at sub-anesthetic dose, rapid and sustained antidepressant response in both humans and rodents. We show here that the Chronic Mild Stress model of depression induces, only in stress-vulnerable rats, depressed-like anhedonic behavior, together with impairment of glutamate/GABA presynaptic release, BDNF mRNA trafficking in dendrites and dendritic morphology in hippocampus. Moreover, we show that a single administration of ketamine restores, in 24 h, normal behavior and most of the cellular/molecular maladaptive changes in vulnerable rats. Interestingly, ketamine treatment did not restore BDNF mRNA levels reduced by chronic stress but rescued dendritic trafficking of BDNF mRNA. The present results are consistent with a mechanism of ketamine involving rapid restoration of synaptic homeostasis, through re-equilibration of glutamate/GABA release and dendritic BDNF for synaptic translation and reversal of synaptic and circuitry impairment.

8.
Cereb Cortex ; 29(12): 4948-4957, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30877789

RESUMEN

Brain energy metabolism actively regulates synaptic transmission and activity. We have previously shown that acute footshock (FS)-stress induces fast and long-lasting functional and morphological changes at excitatory synapses in prefrontal cortex (PFC). Here, we asked whether FS-stress increased energy metabolism in PFC, and modified related cognitive functions. Using positron emission tomography (PET), we found that FS-stress induced a redistribution of glucose metabolism in the brain, with relative decrease of [18F]FDG uptake in ventro-caudal regions and increase in dorso-rostral ones. Absolute [18F]FDG uptake was inversely correlated with serum corticosterone. Increased specific hexokinase activity was also measured in purified PFC synaptosomes (but not in total extract) of FS-stressed rats, which positively correlated with 2-Deoxy [3H] glucose uptake by synaptosomes. In line with increased synaptic energy demand, using an electron microscopy-based stereological approach, we found that acute stress induced a redistribution of mitochondria at excitatory synapses, together with an increase in their volume. The fast functional and metabolic activation of PFC induced by acute stress, was accompanied by rapid and sustained alterations of working memory performance in delayed response to T-maze test. Taken together, the present data suggest that acute stress increases energy consumption at PFC synaptic terminals and alters working memory.


Asunto(s)
Metabolismo Energético/fisiología , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/metabolismo , Estrés Psicológico/metabolismo , Sinapsis/metabolismo , Animales , Masculino , Tomografía de Emisión de Positrones , Ratas , Ratas Sprague-Dawley
9.
Front Pharmacol ; 9: 758, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050444

RESUMEN

Posttraumatic stress disorder (PTSD), the fifth most prevalent mental disorder in the United States, is a chronic, debilitating mental illness with as yet limited options for treatment. Hallmark symptoms of PTSD include intrusive memory of trauma, avoidance of reminders of the event, hyperarousal and hypervigilance, emotional numbing, and anhedonia. PTSD is often triggered by exposure to a single traumatic experience, such as a traffic accident, a natural catastrophe, or an episode of violence. This suggests that stressful events have a primary role in the pathogenesis of the disorder, although genetic background and previous life events are likely involved. However, pathophysiology of this mental disorder, as for major depression and anxiety disorders, is still poorly understood. In particular, it is unknown how can a single traumatic, stressful event induce a disease that can last for years or decades. A major shift in the conceptual framework investigating neuropsychiatric disorders has occurred in recent years, from a monoamine-oriented hypothesis (which dominated pharmacological research for over half a century) to a neuroplasticity hypothesis, which posits that structural and functional changes in brain circuitry (largely in the glutamate system) mediate psychopathology and also therapeutic action. Rodent stress models are very useful to understand pathophysiology of PTSD. Recent studies with acute or subacute stress models have shown that exposure to short-time stressors (from several minutes to a few hours) can induce not only rapid, but also sustained changes in synaptic function (glutamate release, synaptic transmission/plasticity), neuroarchitecture (dendritic morphology, synaptic spines), and behavior (cognitive functions). Some of these changes, e.g., stress-induced increased glutamate release and dendrite retraction, are likely connected and occur more rapidly than previously thought. We propose here to use a modified version of a simple and validated protocol of footshock stress to explore different trajectories in the individual response to acute stress. This new conceptual framework may enable us to identify determinants of resilient versus vulnerable response as well as new targets for treatment, in particular for rapid-acting antidepressants. It will be interesting to investigate the putative prophylactic action of ketamine toward the maladaptive effects of acute stress in this new protocol.

10.
Trends Neurosci ; 40(9): 525-535, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28778394

RESUMEN

Stress is a primary risk factor for neuropsychiatric disorders; at times, even a single trauma can trigger psychopathology. Many rodent models of neuropsychiatric disorders use chronic stress, measuring readouts at the end of long protocols. In a way, traditional chronic models overlook a crucial question: how does the physiological response to stressor(s) turn into a maladaptive pathway that may verge towards psychopathology? Recent evidence suggests that studying the long-term consequences of acute stress would provide critical information on the role of stress in psychopathology. This new conceptual framework could enable us to understand the determinants of a pro-adaptive versus maladaptive trajectory of stress response, and also to study the mechanism of rapid-acting antidepressants, such as ketamine, that target the glutamate system directly.


Asunto(s)
Estrés Psicológico/fisiopatología , Enfermedad Aguda , Animales , Enfermedad Crónica , Humanos , Estrés Psicológico/patología
11.
Neural Plast ; 2016: 7267865, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26966584

RESUMEN

Clinical studies on patients with stress-related neuropsychiatric disorders reported functional and morphological changes in brain areas where glutamatergic transmission is predominant, including frontal and prefrontal areas. In line with this evidence, several preclinical works suggest that glutamate receptors are targets of both rapid and long-lasting effects of stress. Here we found that acute footshock- (FS-) stress, although inducing no transcriptional and RNA editing alterations of ionotropic AMPA and NMDA glutamate receptor subunits, rapidly and transiently modulates their protein expression, phosphorylation, and localization at postsynaptic spines in prefrontal and frontal cortex. In total extract, FS-stress increased the phosphorylation levels of GluA1 AMPA subunit at Ser(845) immediately after stress and of GluA2 Ser(880) 2 h after start of stress. At postsynaptic spines, stress induced a rapid decrease of GluA2 expression, together with an increase of its phosphorylation at Ser(880), suggesting internalization of GluA2 AMPA containing receptors. GluN1 and GluN2A NMDA receptor subunits were found markedly upregulated in postsynaptic spines, 2 h after start of stress. These results suggest selected time-dependent changes in glutamatergic receptor subunits induced by acute stress, which may suggest early and transient enhancement of AMPA-mediated currents, followed by a transient activation of NMDA receptors.


Asunto(s)
Encéfalo/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Estrés Psicológico/metabolismo , Animales , Corticosterona/sangre , Electrochoque , Masculino , Fosforilación , Subunidades de Proteína/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo , Factores de Tiempo
12.
Langmuir ; 31(26): 7381-90, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26057696

RESUMEN

Nanoparticles (NPs) have received much attention in recent years for their diverse potential biomedical applications. However, the synthesis of NPs with desired biodistribution and pharmacokinetics is still a major challenge, with NP size and surface chemistry being the main factors determining the behavior of NPs in vivo. Here we report on the surface chemistry and in vitro cellular uptake of magnetic iron oxide NPs coated with zwitterionic dopamine sulfonate (ZDS). ZDS-coated NPs were compared to similar iron oxide NPs coated with PEG-like 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (MEEA) to investigate how surface chemistry affects their in vitro behavior. ZDS-coated NPs had a very dense coating, guaranteeing high colloidal stability in several aqueous media and negligible interaction with proteins. Treatment of HepG2 cells with increasing doses (2.5-100 µg Fe/mL) of ZDS-coated iron oxide NPs had no effect on cell viability and resulted in a low, dose-dependent NP uptake, inferior than most reported data for the internalization of iron oxide NPs by HepG2 cells. MEEA-coated NPs were scarcely stable and formed micrometer-sized aggregates in aqueous media. They decreased cell viability for dose ≥50 µg Fe/mL, and were more efficiently internalized than ZDS-coated NPs. In conclusion, our data indicate that the ZDS layer prevented both aggregation and sedimentation of iron oxide NPs and formed a biocompatible coating that did not display any biocorona effect. The very low cellular uptake of ZDS-coated iron NPs can be useful to achieve highly selective targeting upon specific functionalization.


Asunto(s)
Carcinoma Hepatocelular/patología , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Espacio Intracelular/metabolismo , Neoplasias Hepáticas/patología , Nanopartículas , Transporte Biológico , Estabilidad de Medicamentos , Éteres de Etila/química , Compuestos Férricos/toxicidad , Células Hep G2 , Humanos , Ácidos Sulfónicos/química , Propiedades de Superficie
13.
BMC Neurosci ; 15: 119, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25332063

RESUMEN

BACKGROUND: The novel antidepressant agomelatine, a melatonergic MT1/MT2 agonist combined with 5-HT2c serotonin antagonist properties, showed antidepressant action in preclinical and clinical studies. There is a general agreement that the therapeutic action of antidepressants needs the activation of slow-onset adaptations in downstream signalling pathways finally regulating neuroplasticity. In the last several years, particular attention was given to cAMP-responsive element binding protein (CREB)-related pathways, since it was shown that chronic antidepressants increase CREB phosphorylation and transcriptional activity, through the activation of calcium/calmodulin-dependent (CaM) and mitogen activated protein kinase cascades (MAPK/Erk1/2). Aim of this work was to analyse possible effects of chronic agomelatine on time-dependent changes of different intracellular signalling pathways in hippocampus and prefrontal/frontal cortex of male rats. To this end, measurements were performed 1 h or 16 h after the last agomelatine or vehicle injection. RESULTS: We have found that in naïve rats chronic agomelatine, contrary to traditional antidepressants, did not increase CREB phosphorylation, but modulates the time-dependent regulation of MAPK/Erk1/2 and Akt/glycogen synthase kinase-3 (GSK-3) pathways. CONCLUSION: Our results suggest that the intracellular molecular mechanisms modulated by chronic agomelatine may be partly different from those of traditional antidepressants and involve the time-dependent regulation of MAPK/Erk1/2 and Akt/GSK-3 signalling pathways. This could exert a role in the antidepressant efficacy of the drug.


Asunto(s)
Acetamidas/farmacología , Antidepresivos/farmacología , Lóbulo Frontal/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Hipocampo/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Western Blotting , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Lóbulo Frontal/enzimología , Hipocampo/enzimología , Masculino , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...