Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 11: 1286683, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033865

RESUMEN

Telomerase activity and telomere elongation are essential conditions for the unlimited proliferation of neoplastic cells. Point mutations in the core promoter region of the telomerase reverse transcriptase (TERT) gene have been found to occur at high frequencies in several tumour types and considered a primary cause of telomerase reactivation in cancer cells. These mutations promote TERT gene expression by multiple mechanisms, including the generation of novel binding sites for nuclear transcription factors, displacement of negative regulators from DNA G-quadruplexes, recruitment of epigenetic activators and disruption of long-range interactions between TERT locus and telomeres. Furthermore, TERT promoter mutations cooperate with TPP1 promoter nucleotide changes to lengthen telomeres and with mutated BRAF and FGFR3 oncoproteins to enhance oncogenic signalling in cancer cells. TERT promoter mutations have been recognized as an early marker of tumour development or a major indicator of poor outcome and reduced patients survival in several cancer types. In this review, we summarize recent findings on the role of TERT promoter mutations, telomerase expression and telomeres elongation in cancer development, their clinical significance and therapeutic opportunities.

2.
Mol Aspects Med ; 92: 101192, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295175

RESUMEN

Cancer prevention is one of the aim with the highest priority in order to reduce the burden of cancer diagnosis and treatment on individuals as well as on healthcare systems. To this aim, vaccines represent the most efficient primary cancer prevention strategy. Indeed, anti-cancer immunological memory elicited by preventive vaccines might promptly expand and prevent tumor from progressing. Antigens derived from microorganisms (MoAs), represent the obvious target for developing highly effective preventive vaccines for virus-induced cancers. In this respect, the drastic reduction in cancer incidence following HBV and HPV preventive vaccines are the paradigmatic example of such evidence. More recently, experimental evidences suggest that MoAs may represent a "natural" anti-cancer preventive vaccination or can be exploited for developing vaccines to prevent cancers presenting highly homologous tumor-associated antigens (TAAs) (e.g. molecular mimicry). The present review describes the different preventive anti-cancer vaccines based on antigens derived from pathogens at the different stages of development.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Vacunas contra el Cáncer/uso terapéutico , Neoplasias/prevención & control , Vacunación
3.
J Transl Med ; 21(1): 123, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788606

RESUMEN

BACKGROUND: The infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has unpredictable manifestations of coronavirus disease (COVID-19) and variable clinical course with some patients being asymptomatic whereas others experiencing severe respiratory distress, or even death. We aimed to evaluate the immunoglobulin G (IgG) response towards linear peptides on a peptide array containing sequences from SARS-CoV-2, Middle East respiratory syndrome-related coronavirus (MERS) and common-cold coronaviruses 229E, OC43, NL63 and HKU1 antigens, in order to identify immunological indicators of disease outcome in SARS-CoV-2 infected patients. METHODS: We included in the study 79 subjects, comprising 19 pediatric and 30 adult SARS-CoV-2 infected patients with increasing disease severity, from mild to critical illness, and 30 uninfected subjects who were vaccinated with one dose of SARS-CoV-2 spike mRNA BNT162b2 vaccine. Serum samples were analyzed by a peptide microarray containing 5828 overlapping 15-mer synthetic peptides corresponding to the full SARS-CoV-2 proteome and selected linear epitopes of spike (S), envelope (E) and membrane (M) glycoproteins as well as nucleoprotein (N) of MERS, SARS and coronaviruses 229E, OC43, NL63 and HKU1 (isolates 1, 2 and 5). RESULTS: All patients exhibited high IgG reactivity against the central region and C-terminus peptides of both SARS-CoV-2 N and S proteins. Setting the threshold value for serum reactivity above 25,000 units, 100% and 81% of patients with severe disease, 36% and 29% of subjects with mild symptoms, and 8% and 17% of children younger than 8-years reacted against N and S proteins, respectively. Overall, the total number of peptides in the SARS-CoV-2 proteome targeted by serum samples was much higher in children compared to adults. Notably, we revealed a differential antibody response to SARS-CoV-2 peptides of M protein between adults, mainly reacting against the C-terminus epitopes, and children, who were highly responsive to the N-terminus of M protein. In addition, IgG signals against NS7B, NS8 and ORF10 peptides were found elevated mainly among adults with mild (63%) symptoms. Antibodies towards S and N proteins of other coronaviruses (MERS, 229E, OC43, NL63 and HKU1) were detected in all groups without a significant correlation with SARS-CoV-2 antibody levels. CONCLUSIONS: Overall, our results showed that antibodies elicited by specific linear epitopes of SARS-CoV-2 proteome are age dependent and related to COVID-19 clinical severity. Cross-reaction of antibodies to epitopes of other human coronaviruses was evident in all patients with distinct profiles between children and adult patients. Several SARS-CoV-2 peptides identified in this study are of particular interest for the development of vaccines and diagnostic tests to predict the clinical outcome of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Epítopos , Adulto , Niño , Humanos , Anticuerpos Antivirales , Vacuna BNT162 , Coronavirus Humano 229E , COVID-19/inmunología , Inmunoglobulina G , Coronavirus del Síndrome Respiratorio de Oriente Medio , Proteoma , SARS-CoV-2
4.
Cancers (Basel) ; 14(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36358677

RESUMEN

Human oncoviruses are able to subvert telomerase function in cancer cells through multiple strategies. The activity of the catalytic subunit of telomerase (TERT) is universally enhanced in virus-related cancers. Viral oncoproteins, such as high-risk human papillomavirus (HPV) E6, Epstein-Barr virus (EBV) LMP1, Kaposi's sarcoma-associated herpesvirus (HHV-8) LANA, hepatitis B virus (HBV) HBVx, hepatitis C virus (HCV) core protein and human T-cell leukemia virus-1 (HTLV-1) Tax protein, interact with regulatory elements in the infected cells and contribute to the transcriptional activation of TERT gene. Specifically, viral oncoproteins have been shown to bind TERT promoter, to induce post-transcriptional alterations of TERT mRNA and to cause epigenetic modifications, which have important effects on the regulation of telomeric and extra-telomeric functions of the telomerase. Other viruses, such as herpesviruses, operate by integrating their genomes within the telomeres or by inducing alternative lengthening of telomeres (ALT) in non-ALT cells. In this review, we recapitulate on recent findings on virus-telomerase/telomeres interplay and the importance of TERT-related oncogenic pathways activated by cancer-causing viruses.

5.
Expert Opin Ther Targets ; 26(9): 767-780, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36369706

RESUMEN

INTRODUCTION: The expression of telomerase reverse transcriptase (TERT) in liver is restricted to rare cells, that are able to replace senescent hepatocytes and regenerate tissue in response to hepatic damage, while becoming extinguished in differentiated progeny cells. TERT gene is permanently activated in liver neoplasms from the very early stage of the hepatocarcinogenesis mainly through the accumulation of genetic alterations, virus-related insertional mutagenesis and somatic mutations in the TERT promoter region. Several lines of evidence suggest that telomerase, beyond the canonical function of telomeres elongation, has multiple oncogenic activities in cancer cells and may represent a promising therapeutic target in hepatocellular carcinoma (HCC). AREAS COVERED: We review the mechanisms of activation of telomerase in HCC, the canonical and non-canonical functions of TERT as well as experimental strategies to directly target telomerase or to inhibit pathways associated with telomerase activity. EXPERT OPINION: TERT holoenzyme and telomerase components represent promising therapeutic targets in the treatment of liver malignancies. Several chemical agents and natural products known to alter telomerase activity are under evaluation for their potency to inhibit telomeres attrition in cirrhosis and TERT function in liver cancer. Therefore, this review outlines the current strategies pursued to suppress the multiple mechanisms of the major telomerase components in liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Telomerasa , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Telomerasa/genética , Telomerasa/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Telómero/metabolismo
6.
Infect Agent Cancer ; 17(1): 40, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902961

RESUMEN

BACKGROUND: Both SARS-CoV-2 mRNA-based vaccines [BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna)] have shown high efficacy, with very modest side effects in limiting transmission of SARS-CoV-2 and in preventing the severe COVID-19 disease, characterized by a worrying high occupation of intensive care units (ICU), high frequency of intubation and ultimately high mortality rate. At the INT, in Naples, only the BNT162b2/Pfizer vaccine has been administered to cancer patients and healthcare professionals aged 16 and over. In the present study, the antibody response levels and their decline were monitored in an interval of 6-9 months after vaccine administration in the two different cohorts of workers of the INT - IRCCS "Fondazione Pascale" Cancer Center (Naples, Italy): the group of individuals previously infected with SARS-CoV-2 and vaccinated with a single dose; and that of individuals negative for previous exposure to SARS-CoV-2 vaccinated with two doses 21 days apart. METHODS: Specific anti-RBD (receptor-binding domain) titers against trimeric spike glycoprotein (S) of SARS-CoV-2 by Roche Elecsys Anti-SARS-CoV-2 S ECLIA immunoassay were determined in serum samples of 27 healthcare workers with a previously documented history of SARS-CoV-2 infection and 123 healthcare workers without, during antibody titers' monitoring. Moreover, geometric mean titers (GMT) and relative fold changes (FC) were calculated. RESULTS: Bimodal titer decline was observed in both previously infected and uninfected SARS-CoV-2 subjects. A first rapid decline was followed by a progressive slow decline in the 6/9 month-period before the further vaccine boost. The trend was explained by 2 different mathematical models, exponential and power function, the latter revealing as predictive of antibody titer decline either in infected or in not previously infected ones. The value of the prolonged lower vaccine titer was about 1 log below in the 6/9-month interval after the single dose for previously infected individuals with SARS-CoV-2 and the two doses for those not previously infected. The titer change, after the boost dose administration, on the other hand, was ≥ 1.5 FC higher than the titers at the 6/9-month time-points in both cohorts. A similar quantitative immune titer was observed in both cohorts 8 days after the last boost dose. The subsequent immunoresponse trend remains to be verified. DISCUSSION: The results show that a very rapid first decline, from the highest antibody peak, was followed by a very slow decline which ensured immune protection lasting more than 6 months. The apparent absence of adverse effects of the rapid decline on the vaccine's immune protective role has been related to a large majority of low avidity antibodies induced by current vaccines. High avidity antibodies with prolonged anti-transmission efficacy show a longer half-life and are lost over a longer interval period. The cellular immunity, capable of preventing severe clinical diseases, lasts much longer. The unbalanced dual activity (cellular vs humoral) while effective in limiting ICU pressure and overall mortality, does not protect against transmission of SARS-CoV-2, resulting in high circulation of the virus among unvaccinated subjects, including the younger population, and the continuous production of variants characterized by changes in transmissibility and pathogenicity. The high mutation rate, peculiar to the RNA virus, can however lead to a dual opposite results: selection of defective and less efficient viruses up to extinction; risk of more efficiently transmitted variants as the current omicron pandemic. CONCLUSIONS: In conclusion the current bimodal antibody-titer decline, following BNT162b2 mRNA anti-SARS-CoV-2 vaccination, needs a further extended analysis to verify the protective borderline levels of immunity and the optimal administration schedule of vaccine boosters. Our current results can contribute to such goal, besides a direct comparison of other FDA-approved and candidate vaccines.

7.
Vaccines (Basel) ; 10(2)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35214685

RESUMEN

Virus-like particles (VLPs) are self-assembled viral protein complexes that mimic the native virus structure without being infectious. VLPs, similarly to wild type viruses, are able to efficiently target and activate dendritic cells (DCs) triggering the B and T cell immunities. Therefore, VLPs hold great promise for the development of effective and affordable vaccines in infectious diseases and cancers. Vaccine formulations based on VLPs, compared to other nanoparticles, have the advantage of incorporating multiple antigens derived from different proteins. Moreover, such antigens can be functionalized by chemical modifications without affecting the structural conformation or the antigenicity. This review summarizes the current status of preventive and therapeutic VLP-based vaccines developed against human oncoviruses as well as cancers.

8.
Curr Med Chem ; 29(15): 2736-2747, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34736375

RESUMEN

BACKGROUND: Chronic infection with hepatitis C virus (HCV) is among the major causes of hepatic fibrosis, cirrhosis, as well as hepatocellular carcinoma (HCC), and it is associated with a significant risk of developing lymphoproliferative disorders. The rate of clinical disease progression is variable depending on multiple host and viral factors, including immune response. METHODS: To perform a comprehensive epitope mapping of anti-HCV antibodies in patients suffering from HCV-related liver or lymphoproliferative diseases, we analyzed clinical samples on a peptide microarray platform made of 5952 overlapping 15-mer synthetic peptides derived from the whole HCV proteome. We evaluated the antibody profile of 71 HCV-positive patients diagnosed with HCC, mixed cryoglobulinemia (MC), and HCV chronic infection. Antibody reactivity against virus peptides was detected in all HCVpositive patients. Importantly, the signal amplitude varied significantly within and between diverse patient groups. RESULTS: Antibody reactivity against C peptides were found generally low in HCV chronically infected asymptomatic subjects and increasingly high in HCC and MC patients. Moreover, we found a statistically significant higher IgG response in HCC and MC patients against specific domains of HCV C, E2, NS3, NS4A, NS4B, NS5A, and p7 compared to HCV-positive subjects. CONCLUSION: In conclusion, our data suggest that immune response against specific HCV protein domains may represent useful biomarkers of disease progression among HCVpositive patients and suggest that peptide microarrays are good tools for the screening of immunotherapy targets in preclinical HCV research.


Asunto(s)
Carcinoma Hepatocelular , Crioglobulinemia , Hepatitis C , Neoplasias Hepáticas , Carcinoma Hepatocelular/complicaciones , Crioglobulinemia/complicaciones , Progresión de la Enfermedad , Hepacivirus , Hepatitis C/complicaciones , Humanos , Inmunidad , Neoplasias Hepáticas/complicaciones , Análisis por Micromatrices , Péptidos
9.
Molecules ; 25(12)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575664

RESUMEN

Antimicrobial peptides (AMPs), or host defense peptides, are small cationic or amphipathic molecules produced by prokaryotic and eukaryotic organisms that play a key role in the innate immune defense against viruses, bacteria and fungi. AMPs have either antimicrobial or anticancer activities. Indeed, cationic AMPs are able to disrupt microbial cell membranes by interacting with negatively charged phospholipids. Moreover, several peptides are capable to trigger cytotoxicity of human cancer cells by binding to negatively charged phosphatidylserine moieties which are selectively exposed on the outer surface of cancer cell plasma membranes. In addition, some AMPs, such as LTX-315, have shown to induce release of tumor antigens and potent damage associated molecular patterns by causing alterations in the intracellular organelles of cancer cells. Given the recognized medical need of novel anticancer drugs, AMPs could represent a potential source of effective therapeutic agents, either alone or in combination with other small molecules, in oncology. In this review we summarize and describe the properties and the mode of action of AMPs as well as the strategies to increase their selectivity toward specific cancer cells.


Asunto(s)
Antibacterianos , Antineoplásicos , Neoplasias , Oligopéptidos , Proteínas Citotóxicas Formadoras de Poros , Antibacterianos/química , Antibacterianos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Oligopéptidos/química , Oligopéptidos/uso terapéutico , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/uso terapéutico
10.
Cancers (Basel) ; 12(4)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340356

RESUMEN

Nanoparticles represent a potent antigen presentation and delivery system to elicit an optimal immune response by effector cells targeting tumor-associated antigens expressed by cancer cells. Many types of nanoparticles have been developed, such as polymeric complexes, liposomes, micelles and protein-based structures such as virus like particles. All of them show promising results for immunotherapy approaches. In particular, the immunogenicity of peptide-based cancer vaccines can be significantly potentiated by nanoparticles. Indeed, nanoparticles are able to enhance the targeting of antigen-presenting cells (APCs) and trigger cytokine production for optimal T cell response. The present review summarizes the categories of nanoparticles and peptide cancer vaccines which are currently under pre-clinical evaluation.

11.
Front Oncol ; 10: 150, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32154165

RESUMEN

Prolonged infection of uterine cervix epithelium with human papillomavirus (HPV) and constitutive expression of viral oncogenes have been recognized as the main cause of the complex molecular changes leading to transformation of cervical epithelial cells. Deregulated expression of microRNAs (miRNA), long non-coding RNAs (lncRNA), and circular RNAs (circRNA) is involved in the initiation and promotion processes of cervical cancer development. Expression profiling of small RNAs in cervical neoplasia revealed up-regulated "oncogenic" miRNAs, such as miR-10a, miR-21, miR-19, and miR-146a, and down regulated "tumor suppressive" miRNAs, including miR-29a, miR-372, miR-214, and miR-218, associated with cell growth, malignant transformation, cell migration, and invasion. Also several lncRNAs, comprising among others HOTAIR, MALAT1, GAS5, and MEG3, have shown to be associated with various pathogenic processes such as tumor progression, invasion as well as therapeutic resistance and emerged as new diagnostic and prognostic biomarkers in cervical cancer. Moreover, human genes encoded circular RNAs, such as has_circ-0018289, have shown to sponge specific miRNAs and to concur to the deregulation of target genes. Viral encoded circE7 has also demonstrated to overexpress E7 oncoprotein thus contributing to cell transformation. In this review, we summarize current literature on the complex interplay between miRNAs, lncRNAs, and circRNAs and their role in cervical neoplasia.

12.
J Pept Sci ; 25(5): e3161, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30912242

RESUMEN

Inflammation of intestinal tissue in patients affected by celiac disease (CD) originates from the adaptive and innate immune responses elicited by the undigested gliadin fragments through molecular mechanisms not yet completely described. Undigested A-gliadin peptide P31-43 is central to CD pathogenesis, entering enterocytes in vesicular compartments by endocytosis and inducing an innate immune response in CD intestinal mucosa. This study focused on the reasons why P31-43 does not behave as adaptive immunogenic agent. Once obtained by NMR analysis, the three-dimensional model of P31-43 was used to implement a series of in silico experiments aimed to explore the ability of the peptide to interact with HLA-DQ2 and the corresponding receptor onto T cells. Our results show that P31-43 is a poor ligand for DQ2 and/or T-cell receptor. This study was also aimed to investigate, from a structural point of view, the previous experimental findings by which P31-43 is able to enhance the phosphorylation level of the protein ERK2, while some P31-43 Ala-mutants decrease or totally inhibit that process. The molecular models of P31-43, P31-43 P36A, and F37A mutants were used for in silico docking experiments onto the ERK2 structure. The experiments support the hypothesis that P31-43 F37A works as an ERK2 phosphorylation inhibitor because it binds to the ERK2 phosphorylation site. This study reports on the structural properties of so far never NMR characterized gliadin peptides relevant in CD and explores details about their mechanisms of action.


Asunto(s)
Enfermedad Celíaca/inmunología , Gliadina/farmacología , Inmunidad Innata/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Gliadina/química , Humanos , Inmunidad Innata/inmunología , Mucosa Intestinal/inmunología , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fosforilación
13.
Mini Rev Med Chem ; 18(18): 1567-1571, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30003859

RESUMEN

The epithelium of the gastrointestinal tract is densely populated by complex microbial communities which exert both local and distant effects in the human body with relevant consequences on the metabolic status, immune system and overall health. A dynamic equilibrium between the many bacterial species and the host intestinal epithelium is maintained through the release of a large number of small molecules and peptides. The quorum sensing peptides are mainly secreted by Gram-positive bacteria and are able to "communicate" with human cells. Some sensing peptides have shown to promote angiogenesis, tumor cell invasion and metastasis of colon cancer as well as of breast cancer cells. On the other hand, quorum sensing cyclodipeptides produced by bacteria and fungi have shown significant antitumor activities. In this review, we summarize the available data on the pro-tumor activities of quorum sensing peptides and the anti-cancer functions of cyclodipeptides in the human malignancies.


Asunto(s)
Microbioma Gastrointestinal , Bacterias Grampositivas/metabolismo , Neoplasias/patología , Péptidos Cíclicos/metabolismo , Percepción de Quorum , Humanos , Neoplasias/irrigación sanguínea , Neoplasias/metabolismo , Neoplasias/microbiología , Neovascularización Patológica
14.
Cancers (Basel) ; 10(7)2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932446

RESUMEN

Viral oncogenesis is a multistep process largely depending on the complex interplay between viruses and host factors. The oncoviruses are capable of subverting the cell signaling machinery and metabolic pathways and exploit them for infection, replication, and persistence. Several viral oncoproteins are able to functionally inactivate the tumor suppressor p53, causing deregulated expression of many genes orchestrated by p53, such as those involved in apoptosis, DNA stability, and cell proliferation. The Epstein⁻Barr virus (EBV) BZLF1, the high-risk human papillomavirus (HPV) E6, and the hepatitis C virus (HCV) NS5 proteins have shown to directly bind to and degrade p53. The hepatitis B virus (HBV) HBx and the human T cell lymphotropic virus-1 (HTLV-1) Tax proteins inhibit p53 activity through the modulation of p300/CBP nuclear factors, while the Kaposi's sarcoma herpesvirus (HHV8) LANA, vIRF-1 and vIRF-3 proteins have been shown to destabilize the oncosuppressor, causing a decrease in its levels in the infected cells. The large T antigen of the Merkel cell polyomavirus (MCPyV) does not bind to p53 but significantly reduces p53-dependent transcription. This review describes the main molecular mechanisms involved in the interaction between viral oncoproteins and p53-related pathways as well as in the development of therapeutic strategies targeting such interactions.

15.
Molecules ; 23(2)2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29385037

RESUMEN

Cell membranes with their selective permeability play important functions in the tight control of molecular exchanges between the cytosol and the extracellular environment as the intracellular membranes do within the internal compartments. For this reason the plasma membranes often represent a challenging obstacle to the intracellular delivery of many anti-cancer molecules. The active transport of drugs through such barrier often requires specific carriers able to cross the lipid bilayer. Cell penetrating peptides (CPPs) are generally 5-30 amino acids long which, for their ability to cross cell membranes, are widely used to deliver proteins, plasmid DNA, RNA, oligonucleotides, liposomes and anti-cancer drugs inside the cells. In this review, we describe the several types of CPPs, the chemical modifications to improve their cellular uptake, the different mechanisms to cross cell membranes and their biological properties upon conjugation with specific molecules. Special emphasis has been given to those with promising application in cancer therapy.


Asunto(s)
Antineoplásicos , Péptidos de Penetración Celular , Portadores de Fármacos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Membrana Celular/metabolismo , Membrana Celular/patología , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacocinética , Péptidos de Penetración Celular/uso terapéutico , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/uso terapéutico , Humanos , Neoplasias/metabolismo , Neoplasias/patología
16.
Molecules ; 22(8)2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28767081

RESUMEN

Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues) have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc.), produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy.


Asunto(s)
Antineoplásicos/química , Quelantes/química , Complejos de Coordinación/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Péptidos/química , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quelantes/farmacología , Quelantes/uso terapéutico , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Diseño de Fármacos , Humanos , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Radiofármacos/química , Radiofármacos/farmacología , Radiofármacos/uso terapéutico
17.
Mini Rev Med Chem ; 17(9): 758-770, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28117023

RESUMEN

BACKGROUND: Radiolabeled peptides, designed to bind with high affinity receptors selectively expressed on cell membranes of different human tissues, represent valuable tools for in vivo imaging of several human diseases. Solid-phase peptide synthesis as well as availability of bifunctional chelating agents and prosthetic groups allows the production and radiolabeling of several peptidebased molecules which are useful to target specific receptors on different cancer types. Among them, octreotide and other analogues of somatostatin, vasoactive intestinal peptide, CCK analogues, bombesin, α-MSH analogues, neurotensin, exendin, RGD, substance P, conjugated to appropriate chelators, such as DTPA, NOTA, DOTA or TETA, and radiolabeled with specific radionuclides, have already been translated into the clinical practice with remarkable sensitivity and diagnostic accurateness. CONCLUSION: This review recapitulates the current applications in clinical practice of radiolabeled peptides with particular attention to those employed for diagnosis and therapy in oncologic as well as nononcologic human diseases.


Asunto(s)
Enfermedad , Péptidos/farmacología , Cintigrafía , Radiofármacos/farmacología , Humanos , Péptidos/síntesis química , Péptidos/química , Radiofármacos/síntesis química , Radiofármacos/química
18.
Molecules ; 21(6)2016 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-27271589

RESUMEN

Formylation of amino groups is a critical reaction involved in several biological processes including post-translational modification of histones. The addition of a formyl group (CHO) to the N-terminal end of a peptide chain generates biologically active molecules. N-formyl-peptides can be produced by different methods. We performed the N-formylation of two chemotactic hexapetides, Met1-Leu2-Lys3-Leu4-Ile5-Val6 and Met1-Met2-Tyr3-Ala4-Leu5-Phe6, carrying out the reaction directly on peptidyl-resin following pre-activation of formic acid with N,N-dicyclohexylcarbodiimmide (DCC) in liquid phase. The overnight incubation at 4 °C resulted in a significant increase in production yields of formylated peptides compared to the reaction performed at room temperature. The method is consistently effective, rapid, and inexpensive. Moreover, the synthetic strategy can be applied for the formylation of all primary amines at N-terminus of peptide chains or amino groups of lysine side-chains in solid phase.


Asunto(s)
Formiatos/química , Histonas/química , Péptidos/química , Histonas/metabolismo , Lisina/química , Péptidos/síntesis química , Procesamiento Proteico-Postraduccional
19.
Chem Biol Drug Des ; 80(1): 9-16, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22260094

RESUMEN

The leader peptide of a recombinant manganese superoxide dismutase (rMnSOD-Lp) acts as a molecular carrier. Clonogenic tests on normal (MRC-5) and endometrial adenocarcinoma cells (HTB-112) were carried out in the presence of rMnSOD-Lp, cisplatin alone (CC) or cisplatin conjugated to the rMnSOD-Lp (rMnSOD-Lp-CC). The platinum delivered into the cells was measured by atomic spectrophotometric absorbance. The treatments on tumor and normal cells were finally evaluated by LM and TM microscopy. Tumor cell death in the case of 0.5 µM cisplatin on its own was minimal, while in the presence of 0.5 µM rMnSOD-Lp-CC, no tumor cells survived. Atomic absorbance analysis showed that rMnSOD-Lp-CC delivered approximately four times more cisplatin into HTB-112 cells than the amount delivered using cisplatin alone. By LM observation, the cells treated with rMnSOD-Lp-CC showed signs of nuclear and cytoplasmic fragmentation, that is, apoptosis induced by the treatment. The therapeutic effect of rMnSOD-Lp-CC on endometrial cancer cells was significant, while on the normal cells it showed only a minimal toxicity. We believe that rMnSOD-Lp deserves to be considered as a molecular carrier to deliver cisplatin directly into tumor cells, thus transforming its antireplicative activity into a specific and selective antitumor agent.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/uso terapéutico , Portadores de Fármacos/química , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/patología , Femenino , Humanos , Inmunohistoquímica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometría Atómica , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
20.
J Pept Sci ; 17(5): 405-12, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21351319

RESUMEN

The development of suitable radioligands for targeting CCK-2 receptor expressing tumors, such as medullary thyroid carcinoma, is of great clinical interest. In the search for the best CCK-2R binding peptides, we have synthesized, evaluated and compared the CCK8 peptide (Asp-Tyr-Met-Gly-Trp-Met-Asp-PheNH(2) ) and two gastrin analogs commonly referred to as MG0 (DGlu-Glu(5)-Ala-Tyr-Gly-Trp-Met-Asp-PheNH(2) ) and MG11 (DGlu(1)-Ala-Tyr-Gly-Trp-Met-Asp-PheNH(2) ). The N-terminal portion of the three peptide sequences was derivatized by introducing the DTPAGlu or DOTA chelators to allow radiolobeling with (111) In(III) and (68) Ga(III), respectively. Saturation binding and cellular internalization experiments were performed on A431 cells overexpressing CCK2R (A431-CCK2R). All compounds showed Kd values in the nM range and were internalized with similar rates in CCK2 receptor overexpressing cells. Biodistribution experiments showed higher specific uptake of both MG0-based compounds compared to conjugates containing the CCK8 and MG11 peptide sequences. The higher retention levels of MG0-based peptides were associated with markedly elevated and undesired kidney uptake compared to the other compounds. Current indications suggest that the 5 Glu N-terminal residues while improving peptide stability and receptor-mediated tumor uptake cause unacceptably high kidney retention. Although displaying lower absolute tumor uptake values, the DOTA-coupled CCK8 peptide provided the best tumor to kidney uptake ratio and appears more suitable as lead compound for improvement of radiopharmaceutical properties.


Asunto(s)
Colecistoquinina/química , Gastrinas/química , Péptidos/química , Receptor de Colecistoquinina B/metabolismo , Animales , Línea Celular Tumoral , Colecistoquinina/análogos & derivados , Radioisótopos de Galio/química , Humanos , Radioisótopos de Indio/química , Ratones , Ratones Desnudos , Medicina Nuclear , Péptidos/metabolismo , Receptor de Colecistoquinina B/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...