Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e15573, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397020

RESUMEN

Aerial imagery and video recordings of animals are used for many areas of research such as animal behaviour, behavioural neuroscience and field biology. Many automated methods are being developed to extract data from such high-resolution videos. Most of the available tools are developed for videos taken under idealised laboratory conditions. Therefore, the task of animal detection and tracking for videos taken in natural settings remains challenging due to heterogeneous environments. Methods that are useful for field conditions are often difficult to implement and thus remain inaccessible to empirical researchers. To address this gap, we present an open-source package called Multi-Object Tracking in Heterogeneous environments (MOTHe), a Python-based application that uses a basic convolutional neural network for object detection. MOTHe offers a graphical interface to automate the various steps related to animal tracking such as training data generation, animal detection in complex backgrounds and visually tracking animals in the videos. Users can also generate training data and train a new model which can be used for object detection tasks for a completely new dataset. MOTHe doesn't require any sophisticated infrastructure and can be run on basic desktop computing units. We demonstrate MOTHe on six video clips in varying background conditions. These videos are from two species in their natural habitat-wasp colonies on their nests (up to 12 individuals per colony) and antelope herds in four different habitats (up to 156 individuals in a herd). Using MOTHe, we are able to detect and track individuals in all these videos. MOTHe is available as an open-source GitHub repository with a detailed user guide and demonstrations at: https://github.com/tee-lab/MOTHe-GUI.


Asunto(s)
Conducta Animal , Redes Neurales de la Computación , Animales , Grabación en Video/métodos
2.
J R Soc Interface ; 20(198): 20220676, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596456

RESUMEN

Inferring the underlying processes that drive collective behaviour in biological and social systems is a significant statistical and computational challenge. While simulation models have been successful in qualitatively capturing many of the phenomena observed in these systems in a variety of domains, formally fitting these models to data remains intractable. Recently, approximate Bayesian computation (ABC) has been shown to be an effective approach to inference if the likelihood function for a model is unavailable. However, a key difficulty in successfully implementing ABC lies with the design, selection and weighting of appropriate summary statistics, a challenge that is especially acute when modelling high dimensional complex systems. In this work, we combine a Gaussian process accelerated ABC method with the automatic learning of summary statistics via graph neural networks. Our approach bypasses the need to design a model-specific set of summary statistics for inference. Instead, we encode relational inductive biases into a neural network using a graph embedding and then extract summary statistics automatically from simulation data. To evaluate our framework, we use a model of collective animal movement as a test bed and compare our method to a standard summary statistics approach and a linear regression-based algorithm.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Teorema de Bayes , Simulación por Computador , Modelos Lineales
3.
Ecol Lett ; 25(12): 2726-2738, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36256526

RESUMEN

Understanding the spatial dynamics of animal movement is an essential component of maintaining ecological connectivity, conserving key habitats, and mitigating the impacts of anthropogenic disturbance. Altered movement and migratory patterns are often an early warning sign of the effects of environmental disturbance, and a precursor to population declines. Here, we present a hierarchical Bayesian framework based on Gaussian processes for analysing the spatial characteristics of animal movement. At the heart of our approach is a novel covariance kernel that links the spatially varying parameters of a continuous-time velocity model with GPS locations from multiple individuals. We demonstrate the effectiveness of our framework by first applying it to a synthetic data set and then by analysing telemetry data from the Serengeti wildebeest migration. Through application of our approach, we are able to identify the key pathways of the wildebeest migration as well as revealing the impacts of environmental features on movement behaviour.


Asunto(s)
Migración Animal , Antílopes , Animales , Teorema de Bayes , Ecosistema , Movimiento
4.
Mov Ecol ; 9(1): 6, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602302

RESUMEN

BACKGROUND: In recent years the field of movement ecology has been revolutionized by our ability to collect high-accuracy, fine scale telemetry data from individual animals and groups. This growth in our data collection capacity has led to the development of statistical techniques that integrate telemetry data with random walk models to infer key parameters of the movement dynamics. While much progress has been made in the use of these models, several challenges remain. Notably robust and scalable methods are required for quantifying parameter uncertainty, coping with intermittent location fixes, and analysing the very large volumes of data being generated. METHODS: In this work we implement a novel approach to movement modelling through the use of multilevel Gaussian processes. The hierarchical structure of the method enables the inference of continuous latent behavioural states underlying movement processes. For efficient inference on large data sets, we approximate the full likelihood using trajectory segmentation and sample from posterior distributions using gradient-based Markov chain Monte Carlo methods. RESULTS: While formally equivalent to many continuous-time movement models, our Gaussian process approach provides flexible, powerful models that can detect multiscale patterns and trends in movement trajectory data. We illustrate a further advantage to our approach in that inference can be performed using highly efficient, GPU-accelerated machine learning libraries. CONCLUSIONS: Multilevel Gaussian process models offer efficient inference for large-volume movement data sets, along with the fitting of complex flexible models. Applications of this approach include inferring the mean location of a migration route and quantifying significant changes, detecting diurnal activity patterns, or identifying the onset of directed persistent movements.

5.
PLoS One ; 14(9): e0222600, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31545848

RESUMEN

Individuals of many species utilise social information whilst making decisions. While many studies have examined social information in making large scale decisions, there is increasing interest in the use of fine scale social cues in groups. By examining the use of these cues and how they alter behaviour, we can gain insights into the adaptive value of group behaviours. We investigated the role of social information in choosing when and where to dive in groups of socially foraging European shags. From this we aimed to determine the importance of social information in the formation of these groups. We extracted individuals' surface trajectories and dive locations from video footage of collective foraging and used computational Bayesian methods to infer how social interactions influence diving. Examination of group spatial structure shows birds form structured aggregations with higher densities of conspecifics directly in front of and behind focal individuals. Analysis of diving behaviour reveals two distinct rates of diving, with birds over twice as likely to dive if a conspecific dived within their visual field in the immediate past. These results suggest that shag group foraging behaviour allows individuals to sense and respond to their environment more effectively by making use of social cues.


Asunto(s)
Aves/fisiología , Animales , Buceo/fisiología , Conducta Alimentaria/psicología , Conducta Social
6.
Artículo en Inglés | MEDLINE | ID: mdl-29581389

RESUMEN

Recent advances in technology and quantitative methods have led to the emergence of a new field of study that stands to link insights of researchers from two closely related, but often disconnected disciplines: movement ecology and collective animal behaviour. To date, the field of movement ecology has focused on elucidating the internal and external drivers of animal movement and the influence of movement on broader ecological processes. Typically, tracking and/or remote sensing technology is employed to study individual animals in natural conditions. By contrast, the field of collective behaviour has quantified the significant role social interactions play in the decision-making of animals within groups and, to date, has predominantly relied on controlled laboratory-based studies and theoretical models owing to the constraints of studying interacting animals in the field. This themed issue is intended to formalize the burgeoning field of collective movement ecology which integrates research from both movement ecology and collective behaviour. In this introductory paper, we set the stage for the issue by briefly examining the approaches and current status of research in these areas. Next, we outline the structure of the theme issue and describe the obstacles collective movement researchers face, from data acquisition in the field to analysis and problems of scale, and highlight the key contributions of the assembled papers. We finish by presenting research that links individual and broad-scale ecological and evolutionary processes to collective movement, and finally relate these concepts to emerging challenges for the management and conservation of animals on the move in a world that is increasingly impacted by human activity.This article is part of the theme issue 'Collective movement ecology'.


Asunto(s)
Conducta Animal , Ecología/métodos , Etología/métodos , Movimiento , Animales , Conservación de los Recursos Naturales/métodos , Ecología/instrumentación , Etología/instrumentación
7.
Artículo en Inglés | MEDLINE | ID: mdl-29581397

RESUMEN

A central question in ecology is how to link processes that occur over different scales. The daily interactions of individual organisms ultimately determine community dynamics, population fluctuations and the functioning of entire ecosystems. Observations of these multiscale ecological processes are constrained by various technological, biological or logistical issues, and there are often vast discrepancies between the scale at which observation is possible and the scale of the question of interest. Animal movement is characterized by processes that act over multiple spatial and temporal scales. Second-by-second decisions accumulate to produce annual movement patterns. Individuals influence, and are influenced by, collective movement decisions, which then govern the spatial distribution of populations and the connectivity of meta-populations. While the field of movement ecology is experiencing unprecedented growth in the availability of movement data, there remain challenges in integrating observations with questions of ecological interest. In this article, we present the major challenges of addressing these issues within the context of the Serengeti wildebeest migration, a keystone ecological phenomena that crosses multiple scales of space, time and biological complexity.This article is part of the theme issue 'Collective movement ecology'.


Asunto(s)
Migración Animal , Antílopes/fisiología , Movimiento , Animales , Ecosistema , Kenia , Tanzanía
8.
Artículo en Inglés | MEDLINE | ID: mdl-29581404

RESUMEN

Social interactions are a significant factor that influence the decision-making of species ranging from humans to bacteria. In the context of animal migration, social interactions may lead to improved decision-making, greater ability to respond to environmental cues, and the cultural transmission of optimal routes. Despite their significance, the precise nature of social interactions in migrating species remains largely unknown. Here we deploy unmanned aerial systems to collect aerial footage of caribou as they undertake their migration from Victoria Island to mainland Canada. Through a Bayesian analysis of trajectories we reveal the fine-scale interaction rules of migrating caribou and show they are attracted to one another and copy directional choices of neighbours, but do not interact through clearly defined metric or topological interaction ranges. By explicitly considering the role of social information on movement decisions we construct a map of near neighbour influence that quantifies the nature of information flow in these herds. These results will inform more realistic, mechanism-based models of migration in caribou and other social ungulates, leading to better predictions of spatial use patterns and responses to changing environmental conditions. Moreover, we anticipate that the protocol we developed here will be broadly applicable to study social behaviour in a wide range of migratory and non-migratory taxa.This article is part of the theme issue 'Collective movement ecology'.


Asunto(s)
Migración Animal , Reno/fisiología , Conducta Social , Animales , Teorema de Bayes , Nunavut
9.
Ecol Lett ; 21(4): 471-483, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29466832

RESUMEN

Pathogen spillover from wildlife to domestic animals and humans, and the reverse, has caused significant epidemics and pandemics worldwide. Although pathogen emergence has been linked to anthropogenic land conversion, a general framework to disentangle underlying processes is lacking. We develop a multi-host model for pathogen transmission between species inhabiting intact and converted habitat. Interspecies contacts and host populations vary with the proportion of land converted; enabling us to quantify infection risk across a changing landscape. In a range of scenarios, the highest spillover risk occurs at intermediate levels of habitat loss, whereas the largest, but rarest, epidemics occur at extremes of land conversion. This framework provides insights into the mechanisms driving disease emergence and spillover during land conversion. The finding that the risk of spillover is highest at intermediate levels of habitat loss provides important guidance for conservation and public health policy.


Asunto(s)
Animales Salvajes , Ecosistema , Animales , Humanos
10.
Sci Adv ; 3(5): e1602682, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28508069

RESUMEN

Collective decisions play a major role in the benefits that animals gain from living in groups. Although the mechanisms of how groups collectively make decisions have been extensively researched, the response of within-group dynamics to ecological conditions is virtually unknown, despite adaptation to the environment being a cornerstone in biology. We investigate how within-group interactions during exploration of a novel environment are shaped by predation, a major influence on the behavior of prey species. We tested guppies (Poecilia reticulata) from rivers varying in predation risk under controlled laboratory conditions and find the first evidence of differences in group interactions between animals adapted to different levels of predation. Fish from high-predation habitats showed the strongest negative relationship between initiating movements and following others, which resulted in less variability in the total number of movements made between individuals. This relationship between initiating movements and following others was associated with differentiation into initiators and followers, which was only observed in fish from high-predation rivers. The differentiation occurred rapidly, as trials lasted 5 min, and was related to shoal cohesion, where more diverse groups from high-predation habitats were more cohesive. Our results show that even within a single species over a small geographical range, decision-making in a social context can vary with local ecological factors.


Asunto(s)
Poecilia/fisiología , Adaptación Fisiológica/fisiología , Animales , Ecosistema , Conducta Predatoria/fisiología , Riesgo , Ríos , Conducta Social
11.
Mov Ecol ; 4: 18, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27429757

RESUMEN

BACKGROUND: Mass migrations are among the most striking examples of animal movement in the natural world. Such migrations are major drivers of ecosystem processes and strongly influence the survival and fecundity of individuals. For migratory animals, a formidable challenge is to find their way over long distances and through complex, dynamic environments. However, recent theoretical and empirical work suggests that by traveling in groups, individuals are able to overcome these challenges and increase their ability to navigate. Here we use models to explore the implications of collective navigation on migratory, and population, dynamics, for both breeding migrations (to-and-fro migrations between distinct, fixed, end-points) and feeding migrations (loop migrations that track favorable conditions). RESULTS: We show that while collective navigation does improve a population's ability to migrate accurately, it can lead to Allee effects, causing the sudden collapse of populations if numbers fall below a critical threshold. In some scenarios, hysteresis prevents the migration from recovering even after the cause of the collapse has been removed. In collectively navigating populations that are locally adapted to specific breeding sites, a slight increase in mortality can cause a collapse of genetic population structure, rather than population size, making it more difficult to detect and prevent. CONCLUSIONS: Despite the large interest in collective behavior and its ubiquity in many migratory species, there is a notable lack of studies considering the implications of social navigation on the ecological dynamics of migratory species. Here we highlight the potential for a previously overlooked Allee effect in socially migrating species that may be important for conservation and management of such species.

12.
PLoS One ; 11(5): e0156342, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27227888

RESUMEN

Accurate and on-demand animal population counts are the holy grail for wildlife conservation organizations throughout the world because they enable fast and responsive adaptive management policies. While the collection of image data from camera traps, satellites, and manned or unmanned aircraft has advanced significantly, the detection and identification of animals within images remains a major bottleneck since counting is primarily conducted by dedicated enumerators or citizen scientists. Recent developments in the field of computer vision suggest a potential resolution to this issue through the use of rotation-invariant object descriptors combined with machine learning algorithms. Here we implement an algorithm to detect and count wildebeest from aerial images collected in the Serengeti National Park in 2009 as part of the biennial wildebeest count. We find that the per image error rates are greater than, but comparable to, two separate human counts. For the total count, the algorithm is more accurate than both manual counts, suggesting that human counters have a tendency to systematically over or under count images. While the accuracy of the algorithm is not yet at an acceptable level for fully automatic counts, our results show this method is a promising avenue for further research and we highlight specific areas where future research should focus in order to develop fast and accurate enumeration of aerial count data. If combined with a bespoke image collection protocol, this approach may yield a fully automated wildebeest count in the near future.


Asunto(s)
Algoritmos , Animales Salvajes/fisiología , Antílopes/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Grabación en Video/instrumentación , Aeronaves , Animales , Inteligencia Artificial , Monitoreo del Ambiente , Densidad de Población , Grabación en Video/métodos
13.
Elife ; 4: e10955, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26652003

RESUMEN

Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here, we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues cause spontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly), and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature.


Asunto(s)
Conducta Animal , Peces/fisiología , Conducta Social , Animales , Evolución Biológica , Modelos Biológicos
14.
Evolution ; 69(6): 1390-1405, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25908012

RESUMEN

Dispersal, whether in the form of a dandelion seed drifting on the breeze, or a salmon migrating upstream to breed in a nonnatal stream, transports genes between locations. At these locations, local adaptation modifies the gene frequencies so their carriers are better suited to particular conditions, be those of newly disturbed soil or a quiet river pool. Both dispersal and local adaptation are major drivers of population structure; however, in general, their respective roles are not independent and the two may often be at odds with one another evolutionarily, each one exhibiting negative feedback on the evolution of the other. Here, we investigate their joint evolution within a simple, discrete-time, metapopulation model. Depending on environmental conditions, their evolutionary interplay leads to either a monomorphic population of highly dispersing generalists or a collection of rarely dispersing, locally adapted, polymorphic sub-populations, each adapted to a particular habitat type. A critical value of environmental heterogeneity divides these two selection regimes and the nature of the transition between them is determined by the level of kin competition. When kin competition is low, at the transition we observe discontinuities, bistability, and hysteresis in the evolved strategies; however, when high, kin competition moderates the evolutionary feedback and the transition is smooth.


Asunto(s)
Adaptación Fisiológica/fisiología , Distribución Animal , Evolución Biológica , Ambiente , Modelos Biológicos , Adaptación Fisiológica/genética , Animales , Dinámica Poblacional , Selección Genética
15.
J R Soc Interface ; 12(103)2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25519991

RESUMEN

Animal groups in nature often display an enhanced collective information-processing capacity. It has been speculated that natural selection will tune this response to be optimal, ensuring that the group is reactive while also being robust to noise. Here, we show that this is unlikely to be the case. By using a simple model of decision-making in a dynamic environment, we find that when individuals behave rationally and are subject to selection based on their accuracy, optimality of collective decision-making is not attained. Instead, individuals overly rely on social information and evolve to be too readily influenced by their neighbours. This is due to a classic evolutionary conflict between individual and collective interest. The result is a sub-optimal system that is poised on the cusp of total unresponsiveness. Individuals in the evolved group exhibit delayed reactions to changes in the environment, before responding with rapid, socially reinforced transitions, reminiscent of familiar human and animal social systems (markets, stampedes, fashions, etc.). Our results demonstrate that behaviour of this type may not be pathological, but instead could represent an evolutionary attractor for such collective systems.


Asunto(s)
Toma de Decisiones , Modelos Teóricos , Conducta Social , Animales , Humanos
16.
PLoS Comput Biol ; 10(8): e1003762, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25101642

RESUMEN

Learning has been studied extensively in the context of isolated individuals. However, many organisms are social and consequently make decisions both individually and as part of a collective. Reaching consensus necessarily means that a single option is chosen by the group, even when there are dissenting opinions. This decision-making process decouples the otherwise direct relationship between animals' preferences and their experiences (the outcomes of decisions). Instead, because an individual's learned preferences influence what others experience, and therefore learn about, collective decisions couple the learning processes between social organisms. This introduces a new, and previously unexplored, dynamical relationship between preference, action, experience and learning. Here we model collective learning within animal groups that make consensus decisions. We reveal how learning as part of a collective results in behavior that is fundamentally different from that learned in isolation, allowing grouping organisms to spontaneously (and indirectly) detect correlations between group members' observations of environmental cues, adjust strategy as a function of changing group size (even if that group size is not known to the individual), and achieve a decision accuracy that is very close to that which is provably optimal, regardless of environmental contingencies. Because these properties make minimal cognitive demands on individuals, collective learning, and the capabilities it affords, may be widespread among group-living organisms. Our work emphasizes the importance and need for theoretical and experimental work that considers the mechanism and consequences of learning in a social context.


Asunto(s)
Conducta Animal/fisiología , Conducta Cooperativa , Toma de Decisiones/fisiología , Aprendizaje/fisiología , Modelos Biológicos , Animales
17.
Curr Biol ; 23(17): R709-11, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-24028946

RESUMEN

Social transmission of information is vital for many group-living animals, allowing coordination of motion and effective response to complex environments. Revealing the interaction networks underlying information flow within these groups is a central challenge. Previous work has modeled interactions between individuals based directly on their relative spatial positions: each individual is considered to interact with all neighbors within a fixed distance (metric range), a fixed number of nearest neighbors (topological range), a 'shell' of near neighbors (Voronoi range), or some combination (Figure 1A). However, conclusive evidence to support these assumptions is lacking. Here, we employ a novel approach that considers individual movement decisions to be based explicitly on the sensory information available to the organism. In other words, we consider that while spatial relations do inform interactions between individuals, they do so indirectly, through individuals' detection of sensory cues. We reconstruct computationally the visual field of each individual throughout experiments designed to investigate information propagation within fish schools (golden shiners, Notemigonus crysoleucas). Explicitly considering visual sensing allows us to more accurately predict the propagation of behavioral change in these groups during leadership events. Furthermore, we find that structural properties of visual interaction networks differ markedly from those of metric and topological counterparts, suggesting that previous assumptions may not appropriately reflect information flow in animal groups.


Asunto(s)
Conducta Animal , Visión Ocular , Animales , Peces/fisiología
18.
Phys Biol ; 10(4): 046002, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23752100

RESUMEN

When motile cells come into contact with one another their motion is often considerably altered. In a process termed contact inhibition of locomotion (CIL) cells reshape and redirect their movement as a result of cell-cell contact. Here we describe a mathematical model that demonstrates that CIL alone is sufficient to produce coherent, collective cell migration. Our model illustrates a possible mechanism behind collective cell migration that is observed, for example, in neural crest cells during development, and in metastasizing cancer cells. We analyse the effects of varying cell density and shape on the alignment patterns produced and the transition to coherent motion. Finally, we demonstrate that this process may have important functional consequences by enhancing the accuracy and robustness of the chemotactic response, and factors such as cell shape and cell density are more significant determinants of migration accuracy than the individual capacity to detect environmental gradients.


Asunto(s)
Biofisica/métodos , Comunicación Celular/fisiología , Movimiento Celular/fisiología , Biología Computacional/métodos , Modelos Biológicos , Inhibición de Migración Celular/fisiología , Forma de la Célula/fisiología , Quimiotaxis/fisiología
19.
Science ; 339(6119): 574-6, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23372013

RESUMEN

The capacity for groups to exhibit collective intelligence is an often-cited advantage of group living. Previous studies have shown that social organisms frequently benefit from pooling imperfect individual estimates. However, in principle, collective intelligence may also emerge from interactions between individuals, rather than from the enhancement of personal estimates. Here, we reveal that this emergent problem solving is the predominant mechanism by which a mobile animal group responds to complex environmental gradients. Robust collective sensing arises at the group level from individuals modulating their speed in response to local, scalar, measurements of light and through social interaction with others. This distributed sensing requires only rudimentary cognition and thus could be widespread across biological taxa, in addition to being appropriate and cost-effective for robotic agents.


Asunto(s)
Migración Animal , Cognición , Ambiente , Conducta de Masa , Algoritmos , Animales , Señales (Psicología) , Cyprinidae , Oscuridad , Luz , Ruido
20.
Science ; 334(6062): 1578-80, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22174256

RESUMEN

Conflicting interests among group members are common when making collective decisions, yet failure to achieve consensus can be costly. Under these circumstances individuals may be susceptible to manipulation by a strongly opinionated, or extremist, minority. It has previously been argued, for humans and animals, that social groups containing individuals who are uninformed, or exhibit weak preferences, are particularly vulnerable to such manipulative agents. Here, we use theory and experiment to demonstrate that, for a wide range of conditions, a strongly opinionated minority can dictate group choice, but the presence of uninformed individuals spontaneously inhibits this process, returning control to the numerical majority. Our results emphasize the role of uninformed individuals in achieving democratic consensus amid internal group conflict and informational constraints.


Asunto(s)
Consenso , Animales , Cyprinidae , Democracia , Conocimiento , Modelos Animales , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...