Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Neurobiol ; 75(5): 435-51, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25251837

RESUMEN

The electrical activity in developing and mature neurons determines the intracellular calcium concentration ([Ca(2+)]i), which in turn is translated into biochemical activities through various signaling cascades. Electrical activity is under control of neuromodulators, which can alter neuronal responses to incoming signals and increase the fidelity of neuronal communication. Conversely, the effects of neuromodulators can depend on the ongoing electrical activity within target neurons; however, these activity-dependent effects of neuromodulators are less well understood. Here, we present evidence that the neuronal firing frequency and intrinsic properties of the action potential (AP) waveform set the [Ca(2+)]i in growth cones and determine how neurons respond to the neuromodulator nitric oxide (NO). We used two well-characterized neurons from the freshwater snail Helisoma trivolvis that show different growth cone morphological responses to NO: B5 neurons elongate filopodia, while those of B19 neurons do not. Combining whole-cell patch clamp recordings with simultaneous calcium imaging, we show that the duration of an AP contributes to neuron-specific differences in [Ca(2+)]i, with shorter APs in B19 neurons yielding lower growth cone [Ca(2+)]i. Through the partial inhibition of voltage-gated K(+) channels, we increased the B19 AP duration resulting in a significant increase in [Ca(2+)]i that was then sufficient to cause filopodial elongation following NO treatment. Our results demonstrate a neuron-type specific correlation between AP shape, [Ca(2+)]i, and growth cone motility, providing an explanation to how growth cone responses to guidance cues depend on intrinsic electrical properties and helping explain the diverse effects of NO across neuronal populations.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Neuronas/fisiología , Óxido Nítrico/farmacología , Animales , Calcio/metabolismo , Células Cultivadas , Técnicas de Placa-Clamp/métodos , Seudópodos/efectos de los fármacos , Seudópodos/fisiología , Caracoles
2.
J Biol Chem ; 289(20): 14291-300, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24713699

RESUMEN

Post-mortem analysis has revealed reduced levels of the protein dysbindin in the brains of those suffering from the neurodevelopmental disorder schizophrenia. Consequently, mechanisms controlling the cellular levels of dysbindin and its interacting partners may participate in neurodevelopmental processes impaired in that disorder. To address this question, we studied loss of function mutations in the genes encoding dysbindin and its interacting BLOC-1 subunits. We focused on BLOC-1 mutants affecting synapse composition and function in addition to their established systemic pigmentation, hematological, and lung phenotypes. We tested phenotypic homogeneity and gene dosage effects in the mouse null alleles muted (Bloc1s5(mu/mu)) and dysbindin (Bloc1s8(sdy/sdy)). Transcripts of NMDA receptor subunits and GABAergic interneuron markers, as well as expression of BLOC-1 subunit gene products, were affected differently in the brains of Bloc1s5(mu/mu) and Bloc1s8(sdy/sdy) mice. Unlike Bloc1s8(sdy/sdy), elimination of one or two copies of Bloc1s5 generated indistinguishable pallidin transcript phenotypes. We conclude that monogenic mutations abrogating the expression of a protein complex subunit differentially affect the expression of other complex transcripts and polypeptides as well as their downstream effectors. We propose that the genetic disruption of different subunits of protein complexes and combinations thereof diversifies phenotypic presentation of pathway deficiencies, contributing to the wide phenotypic spectrum and complexity of neurodevelopmental disorders.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Mutantes/metabolismo , Mutación , Fenotipo , Subunidades de Proteína/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Animales , Disbindina , Proteínas Asociadas a la Distrofina , Hipocampo/metabolismo , Humanos , Ratones , Proteínas Mutantes/genética , Neurotransmisores/metabolismo , Pigmentación/genética , Subunidades de Proteína/genética , Esquizofrenia/etiología , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transcripción Genética/genética , Ácido gamma-Aminobutírico/metabolismo
3.
Hum Mol Genet ; 22(25): 5215-28, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23918659

RESUMEN

Mutations in Vps33 isoforms cause pigment dilution in mice (Vps33a, buff) and Drosophila (car) and the neurogenic arthrogryposis, renal dysfunction and cholestasis syndrome in humans (ARC1, VPS33B). The later disease is also caused by mutations in VIPAS39, (Vps33b interacting protein, apical-basolateral polarity regulator, SPE-39 homolog; ARC2), a protein that interacts with the HOmotypic fusion and Protein Sorting (HOPS) complex, a tether necessary for endosome-lysosome traffic. These syndromes offer insight into fundamental endosome traffic processes unique to metazoans. However, the molecular and cellular mechanisms underlying these mutant phenotypes remain poorly understood. Here we investigate interactions of wild-type and disease-causing mutations in VIPAS39/SPE-39 and Vps33b by yeast two hybrid, immunoprecipitation and quantitative fluorescent microscopy. We find that although few mutations prevent interaction between VIPAS39/SPE-39 and Vps33b, some mutants fragment VIPAS39/SPE-39-positive endosomes, but all mutants alter the subcellular localization of Vps33b to VIPAS39/SPE-39-positive endosomes. Our data suggest that the ARC syndrome may result through impaired VIPAS39/SPE-39 and Vps33b-dependent endosomal maturation or fusion.


Asunto(s)
Artrogriposis/genética , Proteínas Portadoras/genética , Colestasis/genética , Endosomas/genética , Insuficiencia Renal/genética , Proteínas de Transporte Vesicular/genética , Animales , Artrogriposis/patología , Proteínas Portadoras/metabolismo , Colestasis/patología , Endosomas/patología , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisosomas/genética , Lisosomas/metabolismo , Proteínas de la Membrana , Ratones , Mutación , Proteínas Nucleares/genética , Transporte de Proteínas/genética , Insuficiencia Renal/patología , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular/metabolismo
4.
Mol Biol Cell ; 22(24): 4854-67, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21998198

RESUMEN

Dysbindin assembles into the biogenesis of lysosome-related organelles complex 1 (BLOC-1), which interacts with the adaptor protein complex 3 (AP-3), mediating a common endosome-trafficking route. Deficiencies in AP-3 and BLOC-1 affect synaptic vesicle composition. However, whether AP-3-BLOC-1-dependent sorting events that control synapse membrane protein content take place in cell bodies upstream of nerve terminals remains unknown. We tested this hypothesis by analyzing the targeting of phosphatidylinositol-4-kinase type II α (PI4KIIα), a membrane protein present in presynaptic and postsynaptic compartments. PI4KIIα copurified with BLOC-1 and AP-3 in neuronal cells. These interactions translated into a decreased PI4KIIα content in the dentate gyrus of dysbindin-null BLOC-1 deficiency and AP-3-null mice. Reduction of PI4KIIα in the dentate reflects a failure to traffic from the cell body. PI4KIIα was targeted to processes in wild-type primary cultured cortical neurons and PC12 cells but failed to reach neurites in cells lacking either AP-3 or BLOC-1. Similarly, disruption of an AP-3-sorting motif in PI4KIIα impaired its sorting into processes of PC12 and primary cultured cortical neuronal cells. Our findings indicate a novel vesicle transport mechanism requiring BLOC-1 and AP-3 complexes for cargo sorting from neuronal cell bodies to neurites and nerve terminals.


Asunto(s)
Complejo 3 de Proteína Adaptadora/metabolismo , Proteínas Portadoras/metabolismo , Lectinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Transportadoras/metabolismo , Complejo 3 de Proteína Adaptadora/genética , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/genética , Disbindina , Proteínas Asociadas a la Distrofina , Péptidos y Proteínas de Señalización Intracelular , Lectinas/genética , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Células PC12 , Ratas , Membranas Sinápticas/genética , Vesículas Transportadoras/genética
5.
Cell Logist ; 1(3): 111-117, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21922076

RESUMEN

Membrane fusion with vacuoles, the lysosome equivalent of the yeast Saccharomyces cerevisiae, is among the best understood membrane fusion events. Our precise understanding of this fusion machinery stems from powerful genetics and elegant in vitro reconstitution assays. Central to vacuolar membrane fusion is the multi-subunit tether the HO motypic fusion and Protein Sorting (HOPS) complex, a complex of proteins that organizes other necessary components of the fusion machinery. We lack a similarly detailed molecular understanding of membrane fusion with lysosomes or lysosome-related organelles in metazoans. However, it is likely that fundamental principles of how rabs, SNAREs and HOPS tethers work to fuse membranes with lysosomes and related organelles are conserved between Saccharomyces cerevisiae and metazoans. Here, we discuss emerging differences in the coat-dependent mechanisms that govern HOPS complex subcellular distribution between Saccharomyces cerevisiae and metazoans. These differences reside upstream of the membrane fusion event. We propose that the differences in how coats segregate class C Vps/HOPS tethers to organelles and domains of metazoan cells are adaptations to complex architectures that characterize metazoan cells such as those of neuronal and epithelial tissues.

6.
Mol Biol Cell ; 22(10): 1699-715, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21411634

RESUMEN

Coats define the composition of carriers budding from organelles. In addition, coats interact with membrane tethers required for vesicular fusion. The yeast AP-3 (Adaptor Protein Complex 3) coat and the class C Vps/HOPS (HOmotypic fusion and Protein Sorting) tether follow this model as their interaction occurs at the carrier fusion step. Here we show that mammalian Vps class C/HOPS subunits and clathrin interact and that acute perturbation of clathrin function disrupts the endosomal distribution of Vps class C/HOPS tethers in HEK293T and polarized neuronal cells. Vps class C/HOPS subunits and clathrin exist in complex with either AP-3 or hepatocyte growth factor receptor substrate (Hrs). Moreover, Vps class C/HOPS proteins cofractionate with clathrin-coated vesicles, which are devoid of Hrs. Expression of FK506 binding protein (FKBP)-clathrin light chain chimeras, to inhibit clathrin membrane association dynamics, increased Vps class C/HOPS subunit content in rab5 endosomal compartments. Additionally, Vps class C/HOPS subunits were concentrated at tips of neuronal processes, and their delivery was impaired by expression of FKBP-clathrin chimeras and AP20187 incubation. These data support a model in which Vps class C/HOPS subunits incorporate into clathrin-coated endosomal domains and carriers in mammalian cells. We propose that vesicular (AP-3) and nonvesicular (Hrs) clathrin mechanisms segregate class C Vps/HOPS tethers to organelles and domains of mammalian cells bearing complex architectures.


Asunto(s)
Polaridad Celular , Clatrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complejo 3 de Proteína Adaptadora/metabolismo , Subunidades delta de Complexo de Proteína Adaptadora/metabolismo , Animales , Línea Celular , Clatrina/antagonistas & inhibidores , Clatrina/genética , Vesículas Cubiertas por Clatrina/efectos de los fármacos , Vesículas Cubiertas por Clatrina/metabolismo , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Humanos , Inmunoprecipitación , Complejos Multiproteicos/metabolismo , Neuronas/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Tacrolimus/análogos & derivados , Tacrolimus/farmacología , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/metabolismo
7.
J Neurosci ; 30(5): 1699-711, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20130179

RESUMEN

Nitric oxide (NO) is a radical and a gas, properties that allow NO to diffuse through membranes and potentially enable it to function as a "volume messenger." This study had two goals: first, to investigate the mechanisms by which NO functions as a modulator of neuronal excitability, and second, to compare NO effects produced by NO release from chemical NO donors with those elicited by physiological NO release from single neurons. We demonstrate that NO depolarizes the membrane potential of B5 neurons of the mollusk Helisoma trivolvis, initially increasing their firing rate and later causing neuronal silencing. Both effects of NO were mediated by inhibition of Ca-activated iberiotoxin- and apamin-sensitive K channels, but only inhibition of apamin-sensitive K channels fully mimicked all effects of NO on firing activity, suggesting that the majority of electrical effects of NO are mediated via inhibition of apamin-sensitive K channels. We further show that single neurons release sufficient amounts of NO to affect the electrical activity of B5 neurons located nearby. These effects are similar to NO release from the chemical NO donor NOC-7 [3-(2-hydroxy-1-methyl-2-nitrosohydazino)-N-methyl-1-propyanamine], validating the use of NO donors in studies of neuronal excitability. Together with previous findings demonstrating a role for NO in neurite outgrowth and growth cone motility, the results suggest that NO has the potential to shape the development of the nervous system by modulating both electrical activity and neurite outgrowth in neurons located in the vicinity of NO-producing cells, supporting the notion of NO functioning as a volume messenger.


Asunto(s)
Neuronas/metabolismo , Óxido Nítrico/metabolismo , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Apamina/farmacología , Canales de Calcio/metabolismo , Células Cultivadas , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Ganglios de Invertebrados/metabolismo , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Hidrazinas/farmacología , Datos de Secuencia Molecular , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/metabolismo , Canales de Potasio/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Caracoles
8.
Dev Neurobiol ; 67(14): 1932-43, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17874460

RESUMEN

Nitric oxide (NO), a gaseous messenger, has been reported to be involved in a variety of functions in the nervous system, ranging from neuronal pathfinding to learning and memory. We have shown previously that the application of NO via NO donors to growth cones of identified Helisoma buccal neurons B5 in vitro induces an increase in filopodial length, a decrease in filopodial number, and a slowing in neurite advance. It is unclear, however, whether NO released from a physiological source would affect growth cone dynamics. Here we used cell bodies of identified neurons known to express the NO synthesizing enzyme nitric oxide synthase (NOS) as a source of constitutive NO production and tested their effect on growth cones of other cells in a sender-receiver paradigm. We showed that B5 cell bodies induced a rapid increase in filopodial length in NO-responsive growth cones, and that this effect was blocked by the NOS inhibitor 7-NI, suggesting that the effect was mediated by NO. Inhibition of soluble guanylyl cyclase (sGC) with ODQ blocked filopodial elongation induced by B5 somata, confirming that NO acted via sGC. We also demonstrate that the effect of NO was reversible and that a cell releasing NO can affect growth cones over a distance of at least 100 microm. Our results suggest that NO released from a physiological source can affect the motility of nearby growth cones and thus should be considered a signaling molecule with the potential to affect the outcome of neuronal pathfinding in vivo.


Asunto(s)
Conos de Crecimiento/ultraestructura , Neuronas/citología , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Seudópodos/efectos de los fármacos , Análisis de Varianza , Animales , Comunicación Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Ganglios de Invertebrados/citología , Conos de Crecimiento/efectos de los fármacos , Caracoles Helix , Indazoles/farmacología , Neuronas/química , Oxadiazoles/farmacología , Factores de Tiempo
9.
Cell Motil Cytoskeleton ; 63(4): 173-92, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16463277

RESUMEN

Phosphatidylinositol-3-kinase (PI-3K) has been reported to affect neurite outgrowth both in vivo and in vitro. Here we investigated the signaling pathways by which PI-3K affects neurite outgrowth and growth cone motility in identified snail neurons in vitro. Inhibition of PI-3K with wortmannin (2 microM) or LY 294002 (25 microM) resulted in a significant elongation of filopodia and in a slow-down of neurite outgrowth. Experiments using cytochalasin and blebbistatin, drugs that interfere with actin polymerization and myosin II activity, respectively, demonstrated that filopodial elongation resulting from PI-3K inhibition was dependent on actin polymerization. Inhibition of strategic kinases located downstream of PI-3K, such as Akt, ROCK, and MEK, also caused significant filopodial elongation and a slow-down in neurite outgrowth. Another growth cone parameter, filopodial number, was not affected by inhibition of PI-3K, Akt, ROCK, or MEK. A detailed study of growth cone behavior showed that the filopodial elongation induced by inhibiting PI-3K, Akt, ROCK, and MEK was achieved by increasing two motility parameters: the rate with which filopodia extend (extension rate) and the time that filopodia spend elongating. Whereas the inhibition of ROCK or Akt (both activated by the lipid kinase activity of PI-3K) and MEK (activated by the protein kinase activity of PI-3K) had additive effects, simultaneous inhibition of Akt and ROCK showed no additive effect. We further demonstrate that the effects on filopodial dynamics investigated were calcium-independent. Taken together, our results suggest that inhibition of PI-3K signaling results in filopodial elongation and a slow-down of neurite advance, reminiscent of growth cone searching behavior.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Conos de Crecimiento/fisiología , Neuritas/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Seudópodos/fisiología , Actinas/metabolismo , Animales , Calcio/metabolismo , Aumento de la Célula/efectos de los fármacos , Células Cultivadas , Citoesqueleto/fisiología , Ganglios de Invertebrados/metabolismo , Conos de Crecimiento/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/fisiología , Transducción de Señal , Caracoles , Factores de Tiempo
10.
Cell Motil Cytoskeleton ; 57(1): 53-67, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14648557

RESUMEN

The neuronal growth cone provides the sensory and motor structure that guides neuronal processes to their target. The ability of a growth cone to navigate correctly depends on its filopodia, which sample the environment by continually extending and retracting as the growth cone advances. Several second messengers systems that are activated upon contact with extracellular cues have been reported to affect growth cone morphology by changing the length and number of filopodia. Because recent studies have suggested that guidance cues can signal via G-protein coupled receptors to regulate phospholipases, we here investigated whether phospholipase A2 (PLA2) may control filopodial dynamics and could thereby affect neuronal pathfinding. Employing identified Helisoma neurons in vitro, we demonstrate that inhibition of PLA2 with 2 microM BPB caused a 40.3% increase in average filopodial length, as well as a 37.3% reduction in the number of filopodia on a growth cone. The effect of PLA2 inhibition on filopodial length was mimicked by the inhibition of G-proteins with 500 ng/ml pertussis toxin and was partially blocked by the simultaneous activation of PLA2 with 50 nM melittin. We provide evidence that PLA2 acts via production of arachidonic acid (AA), because (1) the effect of inhibition of PLA2 could be counteracted by supplying AA exogenously, and (2) the inhibition of cyclooxygenase, which metabolizes AA into prostaglandins, also increased filopodial length. We conclude that filopodial contact with extracellular signals that alter the activity of PLA2 can control growth cone morphology and may affect neuronal pathfinding by regulating the sensory radius of navigating growth cones.


Asunto(s)
Ácido Araquidónico/biosíntesis , Ganglios de Invertebrados/metabolismo , Conos de Crecimiento/metabolismo , Caracoles Helix/metabolismo , Fosfolipasas A/metabolismo , Seudópodos/metabolismo , Animales , Ácido Araquidónico/farmacología , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Señales (Psicología) , Inhibidores Enzimáticos/farmacología , Matriz Extracelular/metabolismo , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/crecimiento & desarrollo , Conos de Crecimiento/efectos de los fármacos , Caracoles Helix/citología , Caracoles Helix/crecimiento & desarrollo , Meliteno , Toxina del Pertussis/farmacología , Fosfolipasas A/antagonistas & inhibidores , Fosfolipasas A2 , Prostaglandina-Endoperóxido Sintasas/efectos de los fármacos , Prostaglandina-Endoperóxido Sintasas/metabolismo , Seudópodos/efectos de los fármacos , Seudópodos/ultraestructura , Receptores Acoplados a Proteínas G/metabolismo
11.
Pharmacology ; 65(2): 87-95, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11937779

RESUMEN

Interruption of hepatic blood flow is necessary in surgery, but the liver is sensitive to ischemia and reperfusion. Hypoxia induces an increase in intracellular calcium concentration. In previous studies, we have shown that hypoxia-reoxygenation (H/R) increased calcium influx and induced JNK(1)/SAPK(1) activation which was involved in the triggering of apoptosis. The aim of this study was to demonstrate that diltiazem, a calcium inhibitor, reduced JNK(1)/SAPK(1) activation and consequently could decrease H/R-induced apoptosis. Experiments were performed, in the presence of diltiazem, on primary cultured rat hepatocytes, subjected to warm H/R phases and in a liver ischemia-reperfusion model. The activation status of JNK(1)/SAPK(1) was evaluated by immunoprecipitation and immunohistolocalisation experiments, while apoptosis was assessed by measuring caspase activity and by TUNEL labeling. Diltiazem inhibited H/R-induced JNK(1)/SAPK(1) activation and decreased apoptosis. It could be used to improve postoperative liver function.


Asunto(s)
Apoptosis/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Diltiazem/farmacología , Hepatocitos/efectos de los fármacos , Hipoxia/fisiopatología , Oxígeno/farmacología , Animales , Apoptosis/fisiología , Calcio/metabolismo , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/metabolismo , Calor , Hígado/irrigación sanguínea , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Proteína Quinasa 8 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...