Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
HLA ; 100(5): 479-490, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36227705

RESUMEN

Dogs have served as one of the most reliable preclinical models for a variety of diseases and treatments, including stem/progenitor cell transplantation. At the genetic epicenter of dog transplantation models, polymorphic major histocompatibility complex (MHC) genes are most impactful on transplantation success. Among the canine class I and class II genes, DLA-88 has been best studied in transplantation matching and outcomes, with 129 DLA-88 alleles identified. In this study we developed and tested a next generation (NGS) sequencing protocol for rapid identification of DLA-88 genotypes in dogs and compared the workflow and data generated with an established DLA-88 Sanger sequencing protocol that has been in common prior use for clinical studies. By testing the NGS protocol on a random population of 382 dogs, it was possible to demonstrate superior efficacy based on laboratory execution and overall cost. In addition, NGS proved far more effective at discovering new alleles and detecting multiple alleles associated with gene duplication. A total of 51 new DLA-88 alleles are reported here. This rate of new allele discovery indicates that a large pool of yet un-discovered DLA-88 alleles exists in the domestic dog population. In addition, more than 46% of dogs carried three or more copies of DLA-88, further emphasizing the need for more sensitive and cost-effective DLA typing methodology for the dog clinical model.


Asunto(s)
Duplicación de Gen , Antígenos de Histocompatibilidad Clase I , Alelos , Animales , Perros , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Antígenos de Histocompatibilidad Clase I/genética
2.
Mol Cancer Ther ; 21(6): 999-1009, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35405743

RESUMEN

One obstacle for human solid tumor immunotherapy research is the lack of clinically relevant animal models. In this study, we sought to establish a chimeric antigen receptor (CAR) T-cell treatment model for naturally occurring canine sarcomas as a model for human CAR T-cell therapy. Canine CARs specific for B7-H3 were constructed using a single-chain variable fragment derived from the human B7-H3-specific antibody MGA271, which we confirmed to be cross-reactive with canine B7-H3. After refining activation, transduction, and expansion methods, we confirmed target killing in a tumor spheroid three-dimensional assay. We designed a B7-H3 canine CAR T-cell and achieved consistently high levels of transduction efficacy, expansion, and in vitro tumor killing. Safety of the CAR T cells were confirmed in two purposely bred healthy canine subjects following lymphodepletion by cyclophosphamide and fludarabine. Immune response, clinical parameters, and manifestation were closely monitored after treatments and were shown to resemble that of humans. No severe adverse events were observed. In summary, we demonstrated that similar to human cancers, B7-H3 can serve as a target for canine solid tumors. We successfully generated highly functional canine B7-H3-specific CAR T-cell products using a production protocol that closely models human CAR T-cell production procedure. The treatment regimen that we designed was confirmed to be safe in vivo. Our research provides a promising direction to establish in vitro and in vivo models for immunotherapy for canine and human solid tumor treatment.


Asunto(s)
Receptores Quiméricos de Antígenos , Sarcoma , Animales , Antígenos B7 , Línea Celular Tumoral , Perros , Humanos , Sarcoma/tratamiento farmacológico , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Nat Commun ; 10(1): 4596, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601799

RESUMEN

Many of the regulatory features governing erythrocyte specification, maturation, and associated disorders remain enigmatic. To identify new regulators of erythropoiesis, we utilize a functional genomic screen for genes affecting expression of the erythroid marker CD235a/GYPA. Among validating hits are genes coding for the N6-methyladenosine (m6A) mRNA methyltransferase (MTase) complex, including, METTL14, METTL3, and WTAP. We demonstrate that m6A MTase activity promotes erythroid gene expression programs through selective translation of ~300 m6A marked mRNAs, including those coding for SETD histone methyltransferases, ribosomal components, and polyA RNA binding proteins. Remarkably, loss of m6A marks results in dramatic loss of H3K4me3 marks across key erythroid-specific KLF1 transcriptional targets (e.g., Heme biosynthesis genes). Further, each m6A MTase subunit and a subset of their mRNAs targets are required for human erythroid specification in primary bone-marrow derived progenitors. Thus, m6A mRNA marks promote the translation of a network of genes required for human erythropoiesis.


Asunto(s)
Adenosina/análogos & derivados , Eritropoyesis/genética , Biosíntesis de Proteínas , Adenosina/genética , Antígenos CD34/genética , Antígenos CD34/metabolismo , Células de la Médula Ósea/fisiología , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Leucemia Eritroblástica Aguda/genética , Metiltransferasas/genética , Regiones Promotoras Genéticas , Factores de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulón
4.
Blood ; 134(2): 186-198, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31010849

RESUMEN

Myeloid neoplasms, including myelodysplastic syndromes (MDS), are genetically heterogeneous disorders driven by clonal acquisition of somatic mutations in hematopoietic stem and progenitor cells (HPCs). The order of premalignant mutations and their impact on HPC self-renewal and differentiation remain poorly understood. We show that episomal reprogramming of MDS patient samples generates induced pluripotent stem cells from single premalignant cells with a partial complement of mutations, directly informing the temporal order of mutations in the individual patient. Reprogramming preferentially captured early subclones with fewer mutations, which were rare among single patient cells. To evaluate the functional impact of clonal evolution in individual patients, we differentiated isogenic MDS induced pluripotent stem cells harboring up to 4 successive clonal abnormalities recapitulating a progressive decrease in hematopoietic differentiation potential. SF3B1, in concert with epigenetic mutations, perturbed mitochondrial function leading to accumulation of damaged mitochondria during disease progression, resulting in apoptosis and ineffective erythropoiesis. Reprogramming also informed the order of premalignant mutations in patients with complex karyotype and identified 5q deletion as an early cytogenetic anomaly. The loss of chromosome 5q cooperated with TP53 mutations to perturb genome stability, promoting acquisition of structural and karyotypic abnormalities. Reprogramming thus enables molecular and functional interrogation of preleukemic clonal evolution, identifying mitochondrial function and chromosome stability as key pathways affected by acquisition of somatic mutations in MDS.


Asunto(s)
Reprogramación Celular , Evolución Clonal/genética , Células Madre Hematopoyéticas/patología , Síndromes Mielodisplásicos/genética , Células Madre Pluripotentes/patología , Humanos
5.
Bone Marrow Transplant ; 54(7): 973-979, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30279573

RESUMEN

We analyzed micro-RNAs (miRs) as possible diagnostic biomarkers for relevant comorbidities prior to and prognostic biomarkers for mortality following hematopoietic cell transplantation (HCT). A randomly selected group of patients (n = 36) were divided into low-risk (HCT-comorbidity index [HCT-CI] score of 0 and survived HCT) and high-risk (HCT-CI scores ≥ 4 and deceased after HCT) groups. There were 654 miRs tested and 19 met the pre-specified significance level of p < 0.1. In subsequent models, only eight miRs maintained statistical significance in regression models after adjusting for baseline demographic factors; miRs-374b and -454 were underexpressed, whereas miRs-142-3p, -191, -424, -590-3p, -29c, and -15b were overexpressed among high-risk patients relative to low-risk patients. Areas under the curve for these eight miRs ranged between 0.74 and 0.81, suggesting strong predictive capacity. Consideration of miRs may improve risk assessment of mortality and should be further explored in larger future prospective studies.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , MicroARNs/biosíntesis , Leucemia-Linfoma Linfoblástico de Células Precursoras , Periodo Preoperatorio , ARN Neoplásico/biosíntesis , Adulto , Anciano , Aloinjertos , Supervivencia sin Enfermedad , Femenino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/terapia , Masculino , Persona de Mediana Edad , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Tasa de Supervivencia
6.
PLoS One ; 13(6): e0197686, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29889838

RESUMEN

BACKGROUND: Large and giant dog breeds have a high risk for gastric dilatation-volvulus (GDV) which is an acute, life-threatening condition. Previous work by our group identified a strong risk of GDV linked to specific alleles in innate and adaptive immune genes. We hypothesize that variation in the genes of the immune system act through modulation of the gut microbiome, or through autoimmune mechanisms, or both, to predispose dogs to this condition. Here, we investigate whether differences in the canine fecal microbiome are associated with GDV and are linked to previously identified risk alleles. METHODOLOGY/PRINCIPLE FINDINGS: Fecal samples from healthy Great Danes (n = 38), and dogs with at least one occurrence of GDV (n = 37) were collected and analyzed by paired-end sequencing of the 16S rRNA gene. Dietary intake and temperament were estimated from a study-specific dietary and temperament questionnaire. Dogs with GDV had significantly more diverse fecal microbiomes than healthy control dogs. Alpha diversity was significantly increased in dogs with GDV, as well as dogs with at least one risk allele for DRB1 and TRL5. We found no significant association of dietary intake and GDV. Dogs with GDV showed a significant expansion of the rare lineage Actinobacteria (p = 0.004), as well as a significantly greater abundance of Firmicutes (p = 0.004) and a significantly lower abundance of Bacteroidetes (p<0.004). There was a significant difference in the abundance of 10 genera but after correction for multiple comparisons, none were significant. Bacterial phyla were significantly different between controls and dogs with GDV and at least one risk allele for DRB1 and TRL5. Actinobacteria were significantly higher in dogs with GDV and with one risk allele for DRB1 and TLR5 but not DLA88 genes. Furthermore, Collinsella was significantly increased in dogs with at least one risk allele for DRB1 and TLR5. Logistic regression showed that a model which included Actinobacteria, at least one risk allele,and temperament, explained 29% of the variation in risk of GDV in Great Danes. CONCLUSIONS: The microbiome in GDV was altered by an expansion of a minor lineage and was associated with specific alleles of both innate and adaptive immunity genes. These associations are consistent with our hypothesis that immune genes may play a role in predisposition to GDV by altering the gut microbiome. Further research will be required to directly test the causal relationships of immune genes, the gut microbiome and GDV.


Asunto(s)
Enfermedades de los Perros/microbiología , Microbioma Gastrointestinal/inmunología , Sistema Inmunológico/inmunología , Alelos , Animales , Cruzamiento , Enfermedades de los Perros/genética , Enfermedades de los Perros/inmunología , Perros , Femenino , Dilatación Gástrica/genética , Dilatación Gástrica/inmunología , Dilatación Gástrica/microbiología , Microbioma Gastrointestinal/genética , Variación Genética , Sistema Inmunológico/microbiología , Masculino , ARN Ribosómico 16S/genética , Factores de Riesgo , Vólvulo Gástrico/genética , Vólvulo Gástrico/inmunología , Vólvulo Gástrico/microbiología
7.
PLoS One ; 13(4): e0195082, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29617409

RESUMEN

Vasculature is an interface between the circulation and the hematopoietic tissue providing the means for hundreds of billions of blood cells to enter the circulation every day in a regulated fashion. The precise mechanisms that control the interactions of hematopoietic cells with the vessel wall are largely undefined. Here, we report on the development of an in vitro 3D human marrow vascular microenvironment (VME) to study hematopoietic trafficking and the release of blood cells, specifically platelets. We show that mature megakaryocytes from aspirated marrow as well as megakaryocytes differentiated in culture from CD34+ cells can be embedded in a collagen matrix containing engineered microvessels to create a thrombopoietic VME. These megakaryocytes continue to mature, penetrate the vessel wall, and release platelets into the vessel lumen. This process can be blocked with the addition of antibodies specific for CXCR4, indicating that CXCR4 is required for megakaryocyte migration, though whether it is sufficient is unclear. The 3D marrow VME system shows considerable potential for mechanistic studies defining the role of marrow vasculature in thrombopoiesis. Through a stepwise addition or removal of individual marrow components, this model provides potential to define key pathways responsible for the release of platelets and other blood cells.


Asunto(s)
Microambiente Celular , Microvasos/metabolismo , Trombopoyesis/fisiología , Anticuerpos/inmunología , Antígenos CD34/metabolismo , Plaquetas/citología , Plaquetas/metabolismo , Células de la Médula Ósea/citología , Técnicas de Cultivo de Célula , Movimiento Celular , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Megacariocitos/citología , Megacariocitos/metabolismo , Microscopía Confocal , Microscopía Electrónica , Receptores CXCR4/inmunología , Células del Estroma/citología , Células del Estroma/metabolismo
8.
Stem Cell Res Ther ; 9(1): 77, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29566751

RESUMEN

BACKGROUND: The marrow microenvironment and vasculature plays a critical role in regulating hematopoietic cell recruitment, residence, and maturation. Extensive in vitro and in vivo studies have aimed to understand the marrow cell types that contribute to hematopoiesis and the stem cell environment. Nonetheless, in vitro models are limited by a lack of complex multicellular interactions, and cellular interactions are not easily manipulated in vivo. Here, we develop an engineered human vascular marrow niche to examine the three-dimensional cell interactions that direct hematopoietic cell trafficking. METHODS: Using soft lithography and injection molding techniques, fully endothelialized vascular networks were fabricated in type I collagen matrix, and co-cultured under flow with embedded marrow fibroblast cells in the matrix. Marrow fibroblast (mesenchymal stem cells (MSCs), HS27a, or HS5) interactions with the endothelium were imaged via confocal microscopy and altered endothelial gene expression was analyzed with RT-PCR. Monocytes, hematopoietic progenitor cells, and leukemic cells were perfused through the network and their adhesion and migration was evaluated. RESULTS: HS27a cells and MSCs interact directly with the vessel wall more than HS5 cells, which are not seen to make contact with the endothelial cells. In both HS27a and HS5 co-cultures, endothelial expression of junctional markers was reduced. HS27a co-cultures promote perfused monocytes to adhere and migrate within the vessel network. Hematopoietic progenitors rely on monocyte-fibroblast crosstalk to facilitate preferential recruitment within HS27a co-cultured vessels. In contrast, leukemic cells sense fibroblast differences and are recruited preferentially to HS5 and HS27a co-cultures, but monocytes are able to block this sensitivity. CONCLUSIONS: We demonstrate the use of a microvascular platform that incorporates a tunable, multicellular composition to examine differences in hematopoietic cell trafficking. Differential recruitment of hematopoietic cell types to distinct fibroblast microenvironments highlights the complexity of cell-cell interactions within the marrow. This system allows for step-wise incorporation of cellular components to reveal the dynamic spatial and temporal interactions between endothelial cells, marrow-derived fibroblasts, and hematopoietic cells that comprise the marrow vascular niche. Furthermore, this platform has potential for use in testing therapeutics and personalized medicine in both normal and disease contexts.


Asunto(s)
Movimiento Celular , Microambiente Celular , Endotelio Vascular/citología , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Mesenquimatosas/citología , Adhesión Celular , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Microfluídica , Estereolitografía
9.
Blood Adv ; 2(7): 754-761, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29599195

RESUMEN

Thrombocytopenia is a significant complication of chemotherapy and radiation therapy. Platelet factor 4 (PF4; CXCL4) is a negative paracrine of megakaryopoiesis. We have shown that PF4 levels are inversely related to steady-state platelet counts, and to the duration and severity of chemotherapy- and radiation-induced thrombocytopenia (CIT and RIT, respectively). Murine studies suggest that blocking the effect of PF4 improves megakaryopoiesis, raising nadir platelet counts and shortening the time to platelet count recovery. We examined the ability of 2-O, 3-O desulfated heparin (ODSH), a heparin variant with little anticoagulant effects, to neutralize PF4's effects on megakaryopoiesis. Using megakaryocyte colony assays and liquid cultures, we show that ODSH restored megakaryocyte proliferation in PF4-treated Cxcl4-/- murine and human CD34+-derived megakaryocyte cultures (17.4% megakaryocyte colonies, P < .01 compared with PF4). In murine CIT and RIT models, ODSH, started 24 hours after injury, was examined for the effect on hematopoietic recovery demonstrating higher platelet count nadirs (9% ± 5% treated vs 4% ± 4% control) and significantly improved survival in treated animals (73% treated vs 36% control survival). Treatment with ODSH was able to reduce intramedullary free PF4 concentrations by immunohistochemical analysis. In summary, ODSH mitigated CIT and RIT in mice by neutralizing the intramedullary negative paracrine PF4. ODSH, already in clinical trials in humans as an adjuvant to chemotherapy, may be an important, clinically relevant therapeutic for CIT and RIT.


Asunto(s)
Heparina/análogos & derivados , Trombocitopenia/tratamiento farmacológico , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Heparina/farmacología , Heparina/uso terapéutico , Humanos , Megacariocitos/citología , Ratones , Recuento de Plaquetas , Factor Plaquetario 4/sangre , Factor Plaquetario 4/efectos de los fármacos , Factor Plaquetario 4/farmacología , Trombocitopenia/inducido químicamente , Trombocitopenia/etiología , Trombopoyesis
10.
Am J Vet Res ; 78(8): 934-945, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28738011

RESUMEN

OBJECTIVE To determine whether specific alleles of candidate genes of the major histocompatibility complex (MHC) and innate immune system were associated with gastric dilatation-volvulus (GDV) in Great Danes. ANIMALS 42 healthy Great Danes (control group) and 39 Great Danes with ≥ 1 GDV episode. PROCEDURES Variable regions of the 2 most polymorphic MHC genes (DLA88 and DRB1) were amplified and sequenced from the dogs in each group. Similarly, regions of 3 genes associated with the innate immune system (TLR5, NOD2, and ATG16L1), which have been linked to inflammatory bowel disease, were amplified and sequenced. Alleles were evaluated for associations with GDV, controlling for age and dog family. RESULTS Specific alleles of genes DLA88, DRB1, and TLR5 were significantly associated with GDV. One allele of each gene had an OR > 2 in the unadjusted univariate analyses and retained a hazard ratio > 2 after controlling for temperament, age, and familial association in the multivariate analysis. CONCLUSIONS AND CLINICAL RELEVANCE The 3 GDV-associated alleles identified in this study may serve as diagnostic markers for identification of Great Danes at risk for GDV. Additional research is needed to determine whether other dog breeds have the same genetic associations. These findings also provided a new target for research into the etiology of, and potential treatments for, GDV in dogs.


Asunto(s)
Enfermedades de los Perros/genética , Dilatación Gástrica/veterinaria , Antígenos de Histocompatibilidad Clase I/genética , Complejo Mayor de Histocompatibilidad/genética , Vólvulo Gástrico/veterinaria , Receptor Toll-Like 5/genética , Alelos , Animales , Proteínas Relacionadas con la Autofagia/genética , Enfermedades de los Perros/etiología , Perros , Femenino , Dilatación Gástrica/genética , Antígenos de Histocompatibilidad Clase II/genética , Masculino , Análisis Multivariante , Proteína Adaptadora de Señalización NOD2/genética , Modelos de Riesgos Proporcionales , Vólvulo Gástrico/genética
11.
PLoS One ; 12(1): e0171096, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28135323

RESUMEN

Recently, we developed a small molecule responsive hyperactive Mpl-based Cell Growth Switch (CGS) that drives erythropoiesis associated with macrophages in the absence of exogenous cytokines. Here, we compare the physical, cellular and molecular interaction between the macrophages and erythroid cells in CGS expanded CD34+ cells harvested from cord blood, marrow or G-CSF-mobilized peripheral blood. Results indicated that macrophage based erythroid islands could be generated from cord blood and marrow CD34+ cells but not from G-CSF-mobilized CD34+ cells. Additional studies suggest that the deficiency resides with the G-CSF-mobilized CD34+ derived monocytes. Gene expression and proteomics studies of the in vitro generated erythroid islands detected the expression of erythroblast macrophage protein (EMP), intercellular adhesion molecule 4 (ICAM-4), CD163 and DNASE2. 78% of the erythroblasts in contact with macrophages reached the pre reticulocyte orthochromatic stage of differentiation within 14 days of culture. The addition of conditioned medium from cultures of CD146+ marrow fibroblasts resulted in a 700-fold increase in total cell number and a 90-fold increase in erythroid cell number. This novel CD34+ cell derived erythroid island may serve as a platform to explore the molecular basis of red cell maturation and production under normal, stress and pathological conditions.


Asunto(s)
Antígenos CD34/metabolismo , Células de la Médula Ósea/citología , Células Eritroides/citología , Sangre Fetal/citología , Macrófagos/citología , Células de la Médula Ósea/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Eritroblastos/citología , Eritroblastos/efectos de los fármacos , Células Eritroides/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos/farmacología , Humanos , Macrófagos/efectos de los fármacos , Monocitos/citología , Monocitos/efectos de los fármacos , Molécula 1 de Adhesión Celular Vascular/metabolismo
12.
Stem Cell Reports ; 5(5): 753-762, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26607951

RESUMEN

Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) can improve the contractility of injured hearts.We hypothesized that mesodermal cardiovascular progenitors (hESC-CVPs), capable of generating vascular cells in addition to cardiomyocytes, would provide superior repair by contributing to multiple components of myocardium. We performed a head-to-head comparison of hESC-CMs and hESC-CVPs and compared these with the most commonly used clinical cell type, human bone marrow mononuclear cells (hBMMNCs). In a nude rat model of myocardial infarction, hESC-CMs and hESC-CVPs generated comparable grafts. Both similarly improved systolic function and ventricular dilation. Furthermore, only rare human vessels formed from hESC-CVPs. hBM-MNCs attenuated ventricular dilation and enhanced host vascularization without engrafting long-term or improving contractility. Thus, hESC-CMs and CVPs show similar efficacy for cardiac repair, and both are more efficient than hBM-MNCs. However, hESC-CVPs do not form larger grafts or more significant numbers of human vessels in the infarcted heart.


Asunto(s)
Células Madre Embrionarias/citología , Células Progenitoras Endoteliales/citología , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Trasplante de Células Madre , Animales , Células Cultivadas , Humanos , Masculino , Contracción Miocárdica , Miocitos Cardíacos/fisiología , Ratas , Ratas Sprague-Dawley , Función Ventricular
13.
Blood ; 125(23): 3627-36, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25852052

RESUMEN

Thrombopoiesis is the process by which megakaryocytes release platelets that circulate as uniform small, disc-shaped anucleate cytoplasmic fragments with critical roles in hemostasis and related biology. The exact mechanism of thrombopoiesis and the maturation pathways of platelets released into the circulation remain incompletely understood. We showed that ex vivo-generated murine megakaryocytes infused into mice release platelets within the pulmonary vasculature. Here we now show that infused human megakaryocytes also release platelets within the lungs of recipient mice. In addition, we observed a population of platelet-like particles (PLPs) in the infusate, which include platelets released during ex vivo growth conditions. By comparing these 2 platelet populations to human donor platelets, we found marked differences: platelets derived from infused megakaryocytes closely resembled infused donor platelets in morphology, size, and function. On the other hand, the PLP was a mixture of nonplatelet cellular fragments and nonuniform-sized, preactivated platelets mostly lacking surface CD42b that were rapidly cleared by macrophages. These data raise a cautionary note for the clinical use of human platelets released under standard ex vivo conditions. In contrast, human platelets released by intrapulmonary-entrapped megakaryocytes appear more physiologic in nature and nearly comparable to donor platelets for clinical application.


Asunto(s)
Plaquetas , Macrófagos , Megacariocitos , Animales , Plaquetas/metabolismo , Plaquetas/patología , Línea Celular , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Megacariocitos/metabolismo , Megacariocitos/patología , Megacariocitos/trasplante , Ratones , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Trombopoyesis
14.
Blood ; 125(6): 1025-33, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25343958

RESUMEN

Several approaches for controlling hematopoietic stem and progenitor cell expansion, lineage commitment, and maturation have been investigated for improving clinical interventions. We report here that amino acid substitutions in a thrombopoietin receptor (Mpl)--containing cell growth switch (CGS) extending receptor stability improve the expansion capacity of human cord blood CD34(+) cells in the absence of exogenous cytokines. Activation of this CGS with a chemical inducer of dimerization (CID) expands total cells 99-fold, erythrocytes 70-fold, megakaryocytes 0.5-fold, and CD34(+) stem/progenitor cells 4.4-fold by 21 days of culture. Analysis of cells in these expanded populations identified a CID-dependent bipotent erythrocyte-megakaryocyte precursor (PEM) population, and a CID-independent macrophage population. The CD235a(+)/CD41a(+) PEM population constitutes up to 13% of the expansion cultures, can differentiate into erythrocytes or megakaryocytes, exhibits very little expansion capacity, and exists at very low levels in unexpanded cord blood. The CD206(+) macrophage population constitutes up to 15% of the expansion cultures, exhibits high-expansion capacity, and is physically associated with differentiating erythroblasts. Taken together, these studies describe a fundamental enhancement of the CGS expansion platform, identify a novel precursor population in the erythroid/megakaryocytic differentiation pathway of humans, and implicate an erythropoietin-independent, macrophage-associated pathway supporting terminal erythropoiesis in this expansion system.


Asunto(s)
Sustitución de Aminoácidos , Células Eritroides/citología , Eritropoyesis , Megacariocitos/citología , Receptores de Trombopoyetina/genética , Animales , Antígenos CD34/análisis , Línea Celular , Proliferación Celular , Células Cultivadas , Células Eritroides/metabolismo , Sangre Fetal/citología , Humanos , Megacariocitos/metabolismo , Ratones , Glicoproteína IIb de Membrana Plaquetaria/análisis , Receptores de Trombopoyetina/metabolismo
15.
J Vis Exp ; (92): e52009, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25408260

RESUMEN

This manuscript illustrates a protocol for efficiently creating integration-free human induced pluripotent stem cells (iPSCs) from peripheral blood using episomal plasmids and histone deacetylase (HDAC) inhibitors. The advantages of this approach include: (1) the use of a minimal amount of peripheral blood as a source material; (2) nonintegrating reprogramming vectors; (3) a cost effective method for generating vector free iPSCs; (4) a single transfection; and (5) the use of small molecules to facilitate epigenetic reprogramming. Briefly, peripheral blood mononuclear cells (PBMCs) are isolated from routine phlebotomy samples and then cultured in defined growth factors to yield a highly proliferative erythrocyte progenitor cell population that is remarkably amenable to reprogramming. Nonintegrating, nontransmissible episomal plasmids expressing OCT4, SOX2, KLF4, MYCL, LIN28A, and a p53 short hairpin (sh)RNA are introduced into the derived erythroblasts via a single nucleofection. Cotransfection of an episome that expresses enhanced green fluorescent protein (eGFP) allows for easy identification of transfected cells. A separate replication-deficient plasmid expressing Epstein-Barr nuclear antigen 1 (EBNA1) is also added to the reaction mixture for increased expression of episomal proteins. Transfected cells are then plated onto a layer of irradiated mouse embryonic fibroblasts (iMEFs) for continued reprogramming. As soon as iPSC-like colonies appear at about twelve days after nucleofection, HDAC inhibitors are added to the medium to facilitate epigenetic remodeling. We have found that the inclusion of HDAC inhibitors routinely increases the generation of fully reprogrammed iPSC colonies by 2 fold. Once iPSC colonies exhibit typical human embryonic stem cell (hESC) morphology, they are gently transferred to individual iMEF-coated tissue culture plates for continued growth and expansion.


Asunto(s)
Células Sanguíneas/citología , Células Sanguíneas/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Células Madre Pluripotentes Inducidas/citología , Anciano de 80 o más Años , Animales , Eritroblastos/citología , Eritroblastos/efectos de los fármacos , Humanos , Factor 4 Similar a Kruppel , Ratones
16.
PLoS One ; 9(10): e109304, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25275584

RESUMEN

In vitro expanded bone marrow stromal cells contain at least two populations of fibroblasts, a CD146/MCAM positive population, previously reported to be critical for establishing the stem cell niche and a CD146-negative population that expresses CUB domain-containing protein 1 (CDCP1)/CD318. Immunohistochemistry of marrow biopsies shows that clusters of CDCP1+ cells are present in discrete areas distinct from areas of fibroblasts expressing CD146. Using a stromal cell line, HS5, which approximates primary CDCP1+ stromal cells, we show that binding of an activating antibody against CDCP1 results in tyrosine-phosphorylation of CDCP1, paralleled by phosphorylation of Src Family Kinases (SFKs) Protein Kinase C delta (PKC-δ). When CDCP1 expression is knocked-down by siRNA, the expression and secretion of myelopoietic cytokines is increased. These data suggest CDCP1 expression can be used to identify a subset of marrow fibroblasts functionally distinct from CD146+ fibroblasts. Furthermore the CDCP1 protein may contribute to the defining function of these cells by regulating cytokine expression.


Asunto(s)
Antígenos CD/análisis , Células de la Médula Ósea/inmunología , Antígeno CD146/análisis , Moléculas de Adhesión Celular/análisis , Fibroblastos/inmunología , Proteínas de Neoplasias/análisis , Adulto , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos de Neoplasias , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Antígeno CD146/inmunología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/inmunología , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Inmunofenotipificación , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Proteína Quinasa C-delta/análisis , Proteína Quinasa C-delta/inmunología , Interferencia de ARN , ARN Interferente Pequeño/genética , Células del Estroma/citología , Células del Estroma/inmunología , Células del Estroma/metabolismo , Familia-src Quinasas/análisis , Familia-src Quinasas/inmunología
17.
Stem Cells ; 32(3): 662-73, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24038734

RESUMEN

Regulation of hematopoietic stem cell proliferation, lineage commitment, and differentiation in adult vertebrates requires extrinsic signals provided by cells in the marrow microenvironment (ME) located within the bone marrow. Both secreted and cell-surface bound factors critical to this regulation have been identified, yet control of their expression by cells within the ME has not been addressed. Herein we hypothesize that microRNAs (miRNAs) contribute to their controlled expression. MiRNAs are small noncoding RNAs that bind to target mRNAs and downregulate gene expression by either initiating mRNA degradation or preventing peptide translation. Testing the role of miRNAs in downregulating gene expression has been difficult since conventional techniques used to define miRNA-mRNA interactions are indirect and have high false-positive and negative rates. In this report, a genome-wide biochemical technique (high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation or HITS-CLIP) was used to generate unbiased genome-wide maps of miRNA-mRNA interactions in two critical cellular components of the marrow ME: marrow stromal cells and bone marrow endothelial cells. Analysis of these datasets identified miRNAs as direct regulators of JAG1, WNT5A, MMP2, and VEGFA; four factors that are important to ME function. Our results show the feasibility and utility of unbiased genome-wide biochemical techniques in dissecting the role of miRNAs in regulation of complex tissues such as the marrow ME.


Asunto(s)
Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Genoma Humano/genética , MicroARNs/metabolismo , Proteínas Argonautas/metabolismo , Secuencia de Bases , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Microambiente Celular , Regulación hacia Abajo/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Metaloproteinasa 2 de la Matriz/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/genética , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Serrate-Jagged , Células del Estroma/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a
18.
Stem Cells Dev ; 23(7): 729-40, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24131213

RESUMEN

Marrow stromal cells constitute a heterogeneous population of cells, typically isolated after expansion in culture. In vivo, stromal cells often exist in close proximity or in direct contact with monocyte-derived macrophages, yet their interaction with monocytes is largely unexplored. In this report, isolated CD146(+) and CD146(-) stromal cells, as well as immortalized cell lines representative of each (designated HS27a and HS5, respectively), were shown by global DNase I hypersensitive site mapping and principal coordinate analysis to have a lineage association with marrow fibroblasts. Gene expression profiles generated for the CD146(+) and CD146(-) cell lines indicate significant differences in their respective transcriptomes, which translates into differences in secreted factors. Consequently, the conditioned media (CM) from these two populations induce different fates in peripheral blood monocytes. Monocytes incubated in CD146(+) CM acquire a tissue macrophage phenotype, whereas monocytes incubated in CM from CD146(-) cells express markers associated with pre-dendritic cells. Importantly, when CD14(+) monocytes are cultured in contact with the CD146(+) cells, the combined cell populations, assayed as a unit, show increased levels of transcripts associated with organismal development and hematopoietic regulation. In contrast, the gene expression profile from cocultures of monocytes and CD146(-) cells does not differ from that obtained when monocytes are cultured with CD146(-) CM. These in vitro results show that the CD146(+) marrow stromal cells together with monocytes increase the expression of genes relevant to hematopoietic regulation. In vivo relevance of these data is suggested by immunohistochemistry of marrow biopsies showing juxtaposed CD146(+) cells and CD68(+) cells associated with these upregulated proteins.


Asunto(s)
Células Madre Adultas/citología , Células de la Médula Ósea/citología , Fibroblastos/citología , Células Madre Mesenquimatosas/citología , Monocitos/citología , Adulto , Células Madre Adultas/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Células de la Médula Ósea/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Diferenciación Celular , Línea Celular Transformada , Linaje de la Célula/fisiología , Mapeo Cromosómico , Citocinas/genética , Citocinas/metabolismo , Desoxirribonucleasa I/química , Fibroblastos/metabolismo , Citometría de Flujo , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Monocitos/metabolismo
19.
Methods Mol Biol ; 1035: 75-101, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23959984

RESUMEN

Marrow stromal cells (MSCs) are relatively rare cells difficult to visualize in marrow biopsies or detect in aspirated marrow. Under specific conditions MSC can be expanded in vitro and the population can give rise to several mesenchymal lineages. "MSC" also refers to mesenchymal stem cells which implies that all cells in the population are multipotent. It is generally agreed that while there may be a few multipotent stem cells in an MSC population the majority are not stem cells. In either case MSCs do not produce hematopoietic cells. Although MSCs have been isolated and characterized from several tissues, bone marrow is their most common source for research and clinical use. Primary MSC populations can be derived from bone marrow mononuclear cells with relative ease, but it is important to recognize the cellular heterogeneity within a culture and how this may vary from donor to donor. In this chapter, we describe methodology to derive primary MSCs from bone marrow screens, an otherwise discarded by-product of bone marrow harvests used for clinical transplantation. We also describe some useful techniques to characterize and manipulate MSCs-both primary and immortalized cell lines.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Antígeno CD146/metabolismo , Separación Celular , Células Cultivadas , Medios de Cultivo , Citometría de Flujo , Humanos , Cultivo Primario de Células , Transfección
20.
Reproduction ; 146(1): 75-90, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23690628

RESUMEN

The dog is recognized as a highly predictive model for preclinical research. Its size, life span, physiology, and genetics more closely match human parameters than do those of the mouse model. Investigations of the genetic basis of disease and of new regenerative treatments have frequently taken advantage of canine models. However, full utility of this model has not been realized because of the lack of easy transgenesis. Blastocyst-mediated transgenic technology developed in mice has been very slow to translate to larger animals, and somatic cell nuclear transfer remains technically challenging, expensive, and low yield. Spermatogonial stem cell (SSC) transplantation, which does not involve manipulation of ova or blastocysts, has proven to be an effective alternative approach for generating transgenic offspring in rodents and in some large animals. Our recent demonstration that canine testis cells can engraft in a host testis, and generate donor-derived sperm, suggests that SSC transplantation may offer a similar avenue to transgenesis in the canine model. Here, we explore the potential of SSC transplantation in dogs as a means of generating canine transgenic models for preclinical models of genetic diseases. Specifically, we i) established markers for identification and tracking canine spermatogonial cells; ii) established methods for enrichment and genetic manipulation of these cells; iii) described their behavior in culture; and iv) demonstrated engraftment of genetically manipulated SSC and production of transgenic sperm. These findings help to set the stage for generation of transgenic canine models via SSC transplantation.


Asunto(s)
Células Madre Adultas , Trasplante de Células , Técnicas de Transferencia de Gen , Animales , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Separación Celular , Perros , Masculino , Espermatogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...