Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Biosensors (Basel) ; 14(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38534256

RESUMEN

A proof-of-concept of a microwave imaging system for the fast detection of abdominal aortic aneurysms is shown. This experimental technology seeks to overcome the factors hampering the fast screening for these aneurysms with the usual equipment, such as high cost, long-time operation or hazardous exposure to chemical substances. The hardware system is composed of 16 twin antennas mastered by a microcontroller through a switching network, which connects the antennas to the measurement instrument for sequential measurement. The software system is run by a computer, mastering the whole system, automatizing the measurement process and running the signal processing and medical image generation algorithms. Two image generation algorithms are tested: Delay-and-Sum (DAS) and Improved Delay-and-Sum (IDAS). Own-modified versions of these algorithms adapted to the requirements of our system are proposed. The system is carefully calibrated and fine-tuned with known objects placed at known distances. An experimental proof-of-concept is shown with a human torso phantom, including an aorta phantom and an aneurysm phantom placed in different positions. The results show good imaging capabilities with the potential for detecting and locating possible abdominal aortic aneurysms and reporting acceptable errors.


Asunto(s)
Aneurisma de la Aorta Abdominal , Imágenes de Microonda , Humanos , Aneurisma de la Aorta Abdominal/diagnóstico , Programas Informáticos , Algoritmos , Fantasmas de Imagen
2.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762606

RESUMEN

Despite the overwhelming advances in the understanding of the pathogenesis of stroke, a devastating disease affecting millions of people worldwide, currently there are only a limited number of effective treatments available. Preclinical and clinical studies show that stroke is a sexually dimorphic disorder, affecting males and females differently. Strong experimental evidence indicates that estrogen may play a role in this difference and that exogenous 17ß-estradiol (E2) is neuroprotective against stroke in both male and female rodents. However, the molecular mechanisms by which E2 intervenes in ischemia-induced cell death, revealing these sex differences, remain unclear. The present study was aimed to determine, in female rats, the molecular mechanisms of two well-known pro-survival signaling pathways, MAPK/ERK1/2 and PI3K/Akt, that mediate E2 neuroprotection in response to acute ischemic stroke. E2 pretreatment reduced brain damage and attenuated apoptotic cell death in ovariectomized female rats after an ischemic insult. Moreover, E2 decreased phosphorylation of ERK1/2 and prevented ischemia/reperfusion-induced dephosphorylation of both Akt and the pro-apoptotic protein, BAD. However, MAPK/ERK1/2 inhibitor PD98059, but not the PI3K inhibitor LY294002, attenuated E2 neuroprotection. Thus, these results suggested that E2 pretreatment in ovariectomized female rats modulates MAPK/ERK1/2 and activates Akt independently of PI3K to promote cerebroprotection in ischemic stroke. A better understanding of the mechanisms and the influence of E2 in the female sex paves the way for the design of future successful hormone replacement therapies.

3.
Opt Express ; 31(10): 15615-15636, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157659

RESUMEN

An analysis of the different emission regimes (continuous wave, Q-switched, and different forms of modelocking) of a C-band Er:fiber frequency shifted feedback laser at large frequency shifts is presented. We clarify the role of amplified spontaneous emission (ASE) recirculation in the origin of various spectral and dynamical properties of this type of laser. Specifically, we show that Q-switched pulses are supported by a noisy, quasiperiodic ASE recirculation pattern that univocally identifies the pulses within the sequence, and that these Q-switched pulses are chirped as a consequence of the frequency shift. A specific pattern of ASE recirculation, in the form of a periodic stream of pulses, is identified in resonant cavities, namely, those where the free spectral range and the shifting frequency are commensurable. The phenomenology associated with this pattern is explained through the moving comb model of ASE recirculation. Modelocked emission is induced from both integer and fractional resonant conditions. It is shown that ASE recirculation coexists with modelocked pulses, originates a secondary peak in the optical spectrum, and also drives Q-switched modelocking near resonant conditions. Harmonic modelocking with variable harmonic index is also observed in non-resonant cavities.

4.
Antioxidants (Basel) ; 11(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35740081

RESUMEN

Nitrones are encouraging drug candidates for the treatment of oxidative stress-driven diseases such as acute ischemic stroke (AIS). In a previous study, we found a promising quinolylnitrone, QN23, which exerted a neuroprotective effect in neuronal cell cultures subjected to oxygen-glucose deprivation and in experimental models of cerebral ischemia. In this paper, we update the biological and pharmacological characterization of QN23. We describe the suitability of intravenous administration of QN23 to induce neuroprotection in transitory four-vessel occlusion (4VO) and middle cerebral artery occlusion (tMCAO) experimental models of brain ischemia by assessing neuronal death, apoptosis induction, and infarct area, as well as neurofunctional outcomes. QN23 significantly decreased the neuronal death and apoptosis induced by the ischemic episode in a dose-dependent manner and showed a therapeutic effect when administered up to 3 h after post-ischemic reperfusion onset, effects that remained 11 weeks after the ischemic episode. In addition, QN23 significantly reduced infarct volume, thus recovering the motor function in a tMCAO model. Remarkably, we assessed the antioxidant activity of QN23 in vivo using dihydroethidium as a molecular probe for radical species. Finally, we describe QN23 pharmacokinetic parameters. All these results pointing to QN23 as an interesting and promising preclinical candidate for the treatment of AIS.

5.
J Neuropathol Exp Neurol ; 81(8): 614-620, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35763058

RESUMEN

Aging is a major risk factor for cerebral infarction. Since cellular senescence is intrinsic to aging, we postulated that stroke-induced cellular senescence might contribute to neural dysfunction. Adult male Wistar rats underwent 60-minute middle cerebral artery occlusion and were grouped according to 3 reperfusion times: 24 hours, 3, and 7 days. The major biomarkers of senescence: 1) accumulation of the lysosomal pigment, lipofuscin; 2) expression of the cell cycle arrest markers p21, p53, and p16INK4a; and 3) expression of the senescence-associated secretory phenotype cytokines interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin-1ß (IL-1ß) were investigated in brain samples. Lipofuscin accumulation was scarce at the initial stage of brain damage (24 hours), but progressively increased until it reached massive distribution at 7 days post-ischemia. Lipofuscin granules (aggresomes) were mainly confined to the infarcted areas, that is parietal cortex and adjacent caudate-putamen, which were equally affected. The expression of p21, p53, and p16INK4a, and that of IL-6, TNF-α, and IL-1ß, was significantly higher in the ischemic hemisphere than in the non-ischemic hemisphere. These data indicate that brain cell senescence develops during acute ischemic infarction and suggest that the acute treatment of ischemic stroke might be enhanced using senolytic drugs.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Encéfalo/patología , Isquemia Encefálica/metabolismo , Senescencia Celular , Infarto de la Arteria Cerebral Media/metabolismo , Interleucina-6 , Lipofuscina/metabolismo , Masculino , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa , Proteína p53 Supresora de Tumor/metabolismo
6.
J Stroke ; 23(3): 327-342, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34649378

RESUMEN

Mechanical thrombectomy renders the occluding clot available for analysis. Insights into thrombus composition could help establish the stroke cause. We aimed to investigate the value of clot composition analysis as a complementary diagnostic tool in determining the etiology of large vessel occlusion (LVO) ischemic strokes (International Prospective Register of Systematic Reviews [PROSPERO] registration # CRD42020199436). Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we ran searches on Medline (using the PubMed interface) and Web of Science for studies reporting analyses of thrombi retrieved from LVO stroke patients subjected to mechanical thrombectomy (January 1, 2006 to September 21, 2020). The PubMed search was updated weekly up to February 22, 2021. Reference lists of included studies and relevant reviews were hand-searched. From 1,714 identified studies, 134 eligible studies (97 cohort studies, 31 case reports, and six case series) were included in the qualitative synthesis. Physical, histopathological, biological, and microbiological analyses provided information about the gross appearance, mechanical properties, structure, and composition of the thrombi. There were non-unanimous associations of thrombus size, structure, and composition (mainly proportions of fibrin and blood formed elements) with the Trial of Org 10172 in Acute Stroke Treatment (TOAST) etiology and underlying pathologies, and similarities between cryptogenic thrombi and those of known TOAST etiology. Individual thrombus analysis contributed to the diagnosis, mainly in atypical cases. Although cohort studies report an abundance of quantitative rates of main thrombus components, a definite clot signature for accurate diagnosis of stroke etiology is still lacking. Nevertheless, the qualitative examination of the embolus remains an invaluable tool for diagnosing individual cases, particularly regarding atypical stroke causes.

7.
Mol Neurobiol ; 58(1): 408-423, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32959172

RESUMEN

Despite the promising neuroprotective effects of uric acid (UA) in acute ischemic stroke, the seemingly pleiotropic underlying mechanisms are not completely understood. Recent evidence points to transcription factors as UA targets. To gain insight into the UA mechanism of action, we investigated its effects on pertinent biomarkers for the most relevant features of ischemic stroke pathophysiology: (1) oxidative stress (antioxidant enzyme mRNAs and MDA), (2) neuroinflammation (cytokine and Socs3 mRNAs, STAT3, NF-κB p65, and reactive microglia), (3) brain swelling (Vegfa, Mmp9, and Timp1 mRNAs), and (4) apoptotic cell death (Bcl-2, Bax, caspase-3, and TUNEL-positive cells). Adult male Wistar rats underwent intraluminal filament transient middle cerebral artery occlusion (tMCAO) and received UA (16 mg/kg) or vehicle (Locke's buffer) i.v. at 20 min reperfusion. The outcome measures were neurofunctional deficit, infarct, and edema. UA treatment reduced cortical infarct and brain edema, as well as neurofunctional impairment. In brain cortex, increased UA: (1) reduced tMCAO-induced increases in Vegfa and Mmp9/Timp1 ratio expressions; (2) induced Sod2 and Cat expressions and reduced MDA levels; (3) induced Il6 expression, upregulated STAT3 and NF-κB p65 phosphorylation, induced Socs3 expression, and inhibited microglia activation; and (4) ameliorated the Bax/Bcl-2 ratio and induced a reduction in caspase-3 cleavage as well as in TUNEL-positive cell counts. In conclusion, the mechanism for morphological and functional neuroprotection by UA in ischemic stroke is multifaceted, since it is associated to activation of the IL-6/STAT3 pathway, attenuation of edematogenic VEGF-A/MMP-9 signaling, and modulation of relevant mediators of oxidative stress, neuroinflammation, and apoptotic cell death.


Asunto(s)
Interleucina-6/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Neuroprotección/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Ácido Úrico/farmacología , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Edema Encefálico/etiología , Edema Encefálico/patología , Edema Encefálico/fisiopatología , Infarto Encefálico/etiología , Infarto Encefálico/fisiopatología , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/fisiopatología , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/fisiopatología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Ácido Úrico/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
J Cereb Blood Flow Metab ; 41(4): 707-722, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33210575

RESUMEN

Addition of uric acid (UA) to thrombolytic therapy, although safe, showed limited efficacy in improving patients' stroke outcome, despite alleged neuroprotective effects of UA in preclinical research. This systematic review assessed the effects of UA on brain structural and functional outcomes in animal models of ischemic stroke. We searched Medline, Embase and Web of Science to identify 16 and 14 eligible rodent studies for qualitative and quantitative synthesis, respectively. Range of evidence met 10 of a possible 13 STAIR criteria. Median (Q1, Q3) quality score was 7.5 (6, 10) on the CAMARADES 15-item checklist. For each outcome, we used standardised mean difference (SMD) as effect size and random-effects modelling. Meta-analysis showed that UA significantly reduced infarct size (SMD: -1.18; 95% CI [-1.47, -0.88]; p < 0.001), blood-brain barrier (BBB) impairment/oedema (SMD: -0.72; 95% CI [-0.97, -0.48]; p < 0.001) and neurofunctional deficit (SMD: -0.98; 95% CI [-1.32, -0.63]; p < 0.001). Overall, there was low to moderate between-study heterogeneity and sizeable publication bias. In conclusion, published rodent data suggest that UA improves outcome following ischemic stroke by reducing infarct size, improving BBB integrity and ameliorating neurofunctional condition. Specific recommendations are given for further high-quality preclinical research required to better inform clinical research.


Asunto(s)
Fibrinolíticos/uso terapéutico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Terapia Trombolítica/métodos , Ácido Úrico/uso terapéutico , Animales , Fibrinolíticos/farmacología , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Ratones , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/prevención & control , Ratas , Recuperación de la Función , Ácido Úrico/farmacología
9.
Opt Express ; 28(21): 30432-30446, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115045

RESUMEN

We report on a low-coherence interferometer based on Microwave Photonics (MWP) which allows, for the first time to the best of our knowledge, stable determination of the interferogram's phase. The interferometer is built on suppressed carrier, double-sideband modulation, dispersive propagation in a chirped fiber Bragg grating, demodulation by electro-optical frequency down-conversion, and suitable signal processing techniques to account for modulation impairments. Taking as a reference a direct normalization of the link's microwave response, the system retrieves high-resolution interferograms, both in amplitude and phase and free from distortion induced by higher-order dispersion, in an optical path difference of 16.3 mm, surpassing previously reported values based on MWP implementations. We present representative applications targeted to the characterization of C-band sources and components, such as direct analysis of interferograms with 5.5 fs temporal resolution, Fourier-transform spectroscopy with 14 GHz spectral resolution, and optical low-coherence reflectrometry of the impulse response's amplitude of fiber Bragg gratings with 0.55 µm spatial resolution.

10.
Eur J Neurosci ; 52(1): 2756-2770, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32243028

RESUMEN

Including sex is of paramount importance in preclinical and clinical stroke researches, and molecular studies dealing in depth with sex differences in stroke pathophysiology are needed. To gain insight into the molecular sex dimorphism of ischaemic stroke in rat cerebral cortex, male and female adult rats were subjected to transient middle cerebral artery occlusion. The expression of neuroglobin (Ngb) and other functionally related molecules involved in sex steroid signalling (oestrogen and androgen receptors), steroidogenesis (StAR, TSPO and aromatase) and autophagic activity (LC3B-II/LC3B-I ratio, UCP2 and HIF-1α) was assessed in the ipsilateral ischaemic and contralateral non-ischaemic hemispheres. An increased expression of Ngb was detected in the injured female cerebral cortex. In contrast, increased expression of oestrogen receptor α, GPER, StAR, TSPO and UCP2, and decreased androgen receptor expression were detected in the injured male cortex. In both sexes, the ischaemic insult induced an upregulation of LC3B-II/-I ratio, indicative of increased autophagy. Therefore, the cerebral cortex activates both sex-specific and common molecular responses with neuroprotective potential after ischaemia-reperfusion, which globally results in similar stroke outcome in both sexes. Nonetheless, these different potential molecular targets should be taken into account when neuroprotective drugs aiming to reduce brain damage in ischaemic stroke are investigated.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Autofagia , Corteza Cerebral , Modelos Animales de Enfermedad , Femenino , Infarto de la Arteria Cerebral Media , Masculino , Neuroglobina , Ratas , Ratas Sprague-Dawley , Caracteres Sexuales , Esteroides
11.
J Neurosci Methods ; 327: 108402, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31445114

RESUMEN

BACKGROUND: Optimisation of tissue processing procedures in preclinical studies reduces the number of animals used and allows integrated multilevel study in the same sample. Multiple extraction of different biomolecules from the same sample has several limitations. NEW METHOD: Using brain samples from rats subjected to ischemic stroke, we combined lyophilisation of flash-frozen tissue, mechanical pulverisation and cryopreservation in a method to optimise tissue handling and preservation for independent RNA or protein single-extract methods, and subsequent RT-qPCR or Western blot analyses. RESULTS: Lyophilisation resulted in 70% tissue weight loss. RNA (OD260/280∼1.8) and protein yields were similar in non-ischemic and ischemic brain samples, subjected to either flash freezing (FF) or flash freezing followed by lyophilisation (FF + Lyo). RNA transcription of reference genes (Actb and Rn18s), expression of housekeeping proteins (ß-actin and α-tubulin), and mRNA overexpression of stroke-regulated genes (Nos2, Mmp9 and Tnfa) was similar in FF and FF + Lyo samples. COMPARISON WITH EXISTING METHOD(S): Contrary to high heat stress of baking method in a drying oven, lyophilisation maintains the integrity of dried samples for subsequent extractions and analyses. Sample lyophilisation allows different manual representative extractions/analyses from the same rat, it is much cheaper than using commercial kits, and shows higher yields that multiple manual or kit-based extractions. CONCLUSIONS: The lyophilisation-based method for different biomolecule single-extractions from tissue powder aliquots, representing the same rat brain sample, is sample saving, contributes to the reduction principle in animal research, and allows coordinated analysis for accurate correlations between the transcriptome and proteome in stroke and other neuroscience research.


Asunto(s)
Encéfalo , Liofilización/métodos , Proteómica/métodos , ARN/análisis , Accidente Cerebrovascular , Animales , Ratas , Manejo de Especímenes/métodos
12.
J Neuroendocrinol ; 31(8): e12751, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31127971

RESUMEN

Because neuroprotection in stroke should be revisited in the era of recanalisation, the present study analysed the potential neuroprotective effect of the selective oestrogen receptor modulator, bazedoxifene acetate (BZA), in an animal model of diabetic ischaemic stroke that mimics thrombectomy combined with adjuvant administration of a putative neuroprotectant. Four weeks after induction of diabetes (40 mg kg-1 streptozotocin, i.p.), male Wistar rats were subjected to transient middle cerebral artery occlusion (intraluminal thread technique, 60 minutes) and assigned to one of three groups treated with either: vehicle, BZA (3 mg kg-1  day-1 , i.p.) or 17ß-oestradiol (E2 ) (100 µg kg-1  day-1 , i.p.). At 24 hours post-ischaemia-reperfusion, brain damage (neurofunctional score, infarct size and apoptosis), expression of oestrogen receptors (ER)α, ERß and G protein-coupled oestrogen receptor), and activity of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK)1/2 and phosphoinositide 3-kinase/Akt pathways were analysed. At 24 hours after the ischaemic insult, both BZA- and E2 -treated animals showed lower brain damage in terms of improved neurofunctional condition, decreased infarct size and decreased apoptotic cell death. Ischaemia-reperfusion induced a significant decrease in ERα and ERß expression without affecting that of G protein-coupled oestrogen receptor, whereas BZA and E2 reversed such a decrease. The ischaemic insult up-regulated the activity of both the MAPK/ERK1/2 and phosphoinositide 3-kinase/Akt pathways; BZA and E2 attenuated the increased activity of the ERK1/2 pathway, without affecting that of the Akt pathway. The results of the present study lend further support to the consideration of BZA as an effective and safer alternative overcoming the drawbacks of E2 with respect to improving diabetic ischaemic stroke outcome after successful reperfusion.


Asunto(s)
Isquemia Encefálica/prevención & control , Angiopatías Diabéticas/prevención & control , Estradiol/farmacología , Indoles/farmacología , Receptores de Estrógenos/genética , Accidente Cerebrovascular/prevención & control , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Wistar , Receptores de Estrógenos/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Estreptozocina , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
13.
Sensors (Basel) ; 19(9)2019 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-31060248

RESUMEN

Fiber-optics sensors using interrogation based on incoherent optical frequency-domain reflectometry (I-OFDR) offer benefits such as the high stability of interference in the radio-frequency (RF) domain and the high SNR due to narrowband RF detection. One of the main impairments of the technique, however, is the necessity of high-frequency detectors and vector network analyzers (VNA) in systems requiring high resolution. In this paper, we report on two C-band implementations of an I-OFDR architecture based on homodyne electro-optic downconversion enabling detection without VNA and using only low-bandwidth, high-sensitivity receivers, therefore alleviating the requirements of conventional I-OFDR approaches. The systems are based on a pair of modulators that are synchronized to perform modulation and homodyne downconversion at a reference frequency of 25.5 kHz. In the first system, we attain centimeter resolution with a sensitivity down to -90 dB using the modulation frequency range comprised between 3.2 and 14.2 GHz. In the second, we measured, for the first time using this approach, Rayleigh backscattering traces in standard single mode fiber with resolution of 6 m and a sensitivity of -83 dB by use of the 10.1-30.1 MHz range. These results show the feasibility of these simple, homodyne downconversion I-OFDR systems as compact interrogators for distributed or quasi-distributed optical fiber sensors.

14.
Neuroscience ; 388: 263-273, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30077000

RESUMEN

Preclinical and clinical studies support a promising, albeit not definitive, neuroprotective effect of emergent uric acid (UA) administration in ischemic stroke. We assessed the effects of UA in an ischemic stroke model relevant to the current treatment paradigm of mechanical thrombectomy within the STAIR/RIGOR recommendations. A cohort of male and female Wistar rats was subjected to ischemic stroke with mechanical recanalization under physiological monitoring. The effects of transient middle cerebral artery occlusion (tMCAO) with adjunctive UA (IV, 16 mg/kg) or vehicle treatment were assessed at 24 h and 7 days. Outcomes included neurofunctional impairment, brain infarct (TTC staining, MRI imaging and cresyl violet staining) and edema. At 24 h after tMCAO, neurofunctional scores and brain infarct were significantly reduced in rats subjected to UA treatment compared to vehicle, with a selective effect of UA on cortical infarct. No differential effect of UA between male and female rats was evidenced, as no significant interaction of sex with stroke outcomes was found. Rats achieving higher reperfusion levels after tMCAO showed superior reduction of neurofunctional impairment, cortical infarct and edema by UA. After a 7-day follow-up, male rats subjected to UA treatment still showed reductions in neurofunctional impairment and infarct size, compared to vehicle treatment. In conclusion, UA treatment immediately after transient ischemia results in a sex-independent, maintained reduction of brain damage and neurological impairment, better manifested in hyperperfusion conditions. This synergistic effect of UA with mechanical recanalization supports additional clinical testing of UA as an adjunctive treatment to mechanical thrombectomy.


Asunto(s)
Isquemia Encefálica/terapia , Trombolisis Mecánica , Fármacos Neuroprotectores/farmacología , Accidente Cerebrovascular/terapia , Ácido Úrico/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Isquemia Encefálica/patología , Terapia Combinada , Modelos Animales de Enfermedad , Femenino , Masculino , Distribución Aleatoria , Ratas Wistar , Recuperación de la Función , Accidente Cerebrovascular/patología
15.
Mol Cell Endocrinol ; 472: 1-9, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29842904

RESUMEN

Along with its role in regulating blood pressure and fluid homeostasis, the natriuretic peptide system could be also part of an endogenous protective mechanism against brain damage. We aimed to assess the possibility that exogenous atrial natriuretic peptide (ANP) could protect against acute ischemic stroke, as well as the molecular mechanisms involved. Three groups of rats subjected to transient middle cerebral artery occlusion (tMCAO, intraluminal filament technique, 60 min) received intracerebroventricular vehicle, low-dose ANP (0.5 nmol) or high-dose ANP (2.5 nmol), at 30 min reperfusion. Neurofunctional condition, and brain infarct and edema volumes were measured at 24 h after tMCAO. Apoptotic cell death and expression of natriuretic peptide receptors (NPR-A and NPR-C), K+ channels (KATP, KV and BKCa), and PI3K/Akt and MAPK/ERK1/2 signaling pathways were analyzed. Significant improvement in neurofunctional status, associated to reduction in infarct and edema volumes, was shown in the high-dose ANP group. As to the molecular mechanisms analyzed, high-dose ANP: 1) reduced caspase-3-mediated apoptosis; 2) did not modify the expression of NPR-A and NPR-C, which had been downregulated by the ischemic insult; 3) induced a significant reversion of ischemia-downregulated KATP channel expression; and 4) induced a significant reversion of ischemia-upregulated pERK2/ERK2 expression ratio. In conclusion, ANP exerts a significant protective role in terms of both improvement of neurofunctional status and reduction in infarct volume. Modulation of ANP on some molecular mechanisms involved in ischemia-induced apoptotic cell death (KATP channels and MAPK/ERK1/2 signaling pathway) could account, at least in part, for its beneficial effect. Therefore, ANP should be considered as a potential adjunctive neuroprotective agent improving stroke outcome after successful reperfusion interventions.


Asunto(s)
Factor Natriurético Atrial/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Factor Natriurético Atrial/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Isquemia Encefálica/complicaciones , Caspasa 3/metabolismo , División del ADN/efectos de los fármacos , Regulación hacia Abajo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Inyecciones Intraventriculares , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Canales de Potasio/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Receptores del Factor Natriurético Atrial/metabolismo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/patología , Accidente Cerebrovascular/complicaciones
16.
Eur J Pharmacol ; 815: 64-72, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29024691

RESUMEN

Atrial natriuretic peptide (ANP) is a vasodilator with significant regional differences and controversial effects in the cerebral circulation, a vascular bed particularly prone to diabetes-induced complications. The present study has investigated how alloxan-induced diabetes modifies the mechanisms involved in the response of the rabbit basilar artery to ANP. ANP (10-12-10-7M) relaxed precontracted basilar arteries, with higher potency in diabetic than in control rabbits. In arteries from both groups of animals, endothelium removal reduced ANP-induced relaxations. Inhibition of NO-synthesis attenuated ANP-induced relaxation but this attenuation was lower in diabetic than in control rabbits. In control rabbits, indomethacin displaced to the left the concentration-response curve to ANP, without significantly modifying the Emax value. In diabetic rabbits, indomethacin significantly enhanced arterial relaxations to ANP. In KCl-depolarised arteries, relaxation to ANP was almost abolished both in control and in diabetic rabbits. Iberiotoxin inhibited relaxations to ANP in both groups of rabbits. Glibenclamide and 4-aminopyridine inhibited the ANP-induced relaxations more in diabetic than in control rabbits. Basilar arteries from diabetic rabbits showed decreased natriuretic peptide receptor C expression and no changes in natriuretic peptide receptor A, large conductance calcium-activated K+ channels (BKCa), ATP-sensitive K+ channels (KATP) and voltage-sensitive K+ channels (KV) expression. These results suggest that diabetes enhances the sensitivity of the rabbit basilar artery to ANP by mechanisms that at least include reduced expression of natriuretic peptide receptor C, and enhanced activity of KATP and KV channels. Furthermore, diabetes reduces endothelial NO and prostacyclin which mediate arterial relaxation to ANP.


Asunto(s)
Factor Natriurético Atrial/farmacología , Arteria Basilar/efectos de los fármacos , Arteria Basilar/metabolismo , Diabetes Mellitus Experimental/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Masculino , Óxido Nítrico/metabolismo , Prostaglandinas/metabolismo , Conejos , Receptores del Factor Natriurético Atrial/metabolismo
17.
J Steroid Biochem Mol Biol ; 171: 296-304, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28479229

RESUMEN

As the knowledge on the estrogenic system in the brain grows, the possibilities to modulate it in order to afford further neuroprotection in brain damaging disorders so do it. We have previously demonstrated the ability of the selective estrogen receptor modulator, bazedoxifene (BZA), to reduce experimental ischemic brain damage. The present study has been designed to gain insight into the molecular mechanisms involved in such a neuroprotective action by investigating: 1) stroke-induced apoptotic cell death; 2) expression of estrogen receptors (ER) ERα, ERß and the G-protein coupled estrogen receptor (GPER); and 3) modulation of MAPK/ERK1/2 and PI3K/Akt signaling pathways. For comparison, a parallel study was done with 17ß-estradiol (E2)-treated animals. Male Wistar rats subject to transient right middle cerebral artery occlusion (tMCAO, intraluminal thread technique, 60min), were distributed in vehicle-, BZA- (20.7±2.1ng/mL in plasma) and E2- (45.6±7.8pg/mL in plasma) treated groups. At 24h from the onset of tMCAO, RT-PCR, Western blot and histochemical analysis were performed on brain tissue samples. Ischemia-reperfusion per se increased apoptosis as assessed by both caspase-3 activity and TUNEL-positive cell counts, which were reversed by both BZA and E2. ERα and ERß expression, but not that of GPER, was reduced by the ischemic insult. BZA and E2 had different effects: while BZA increased both ERα and ERß expression, E2 increased ERα expression but did not change that of ERß. Both MAPK/ERK1/2 and PI3K/Akt pathways were stimulated under ischemic conditions. While BZA strongly reduced the increased p-ERK1/2 levels, E2 did not. Neither BZA nor E2 modified ischemia-induced increase in p-Akt levels. These results show that modulation of ERα and ERß expression, as well as of the ERK1/2 signaling pathway accounts, at least in part, for the inhibitory effect of BZA on the stroke-induced apoptotic cell death. This lends mechanistic support to the consideration of BZA as a potential neuroprotective drug in acute ischemic stroke treatment.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Indoles/uso terapéutico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Daño por Reperfusión/prevención & control , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Estradiol/uso terapéutico , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Estrógenos/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Fosfatos de Fosfatidilinositol/agonistas , Fosfatos de Fosfatidilinositol/metabolismo , Ratas Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
18.
Appl Opt ; 55(23): 6523-9, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27534505

RESUMEN

We report on the self-referenced, intensity-based, remote and passive interrogation of a fiber Bragg grating (FBG) for point sensing, by use of a reconfigurable dual-wavelength source composed of a tunable wavelength and subsequent suppressed-carrier, electro-optic amplitude modulation. The demodulation procedure is based on the measurement of the reflected power at two different wavelengths within the FBG spectral response. The grating was interrogated by use of conventional spectral analysis, and also after 32.9 km of single-mode fiber using a dispersive incoherent optical Fourier-domain reflectometry technique. Both procedures provide picometer resolution in the determination of Bragg wavelength shifts at a comparatively similar scan time (∼1 s) and received power (-16 dBm). The main limitations in each interrogation scheme have been identified. These results show the feasibility of interrogation systems incorporating relatively simple frequency combs at a calibrated, and eventually reconfigurable, wavelength grid with an, at least, similar performance to that of commercial FBG interrogators.

19.
J Cardiovasc Pharmacol ; 68(4): 313-321, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27389095

RESUMEN

We have previously shown that the selective estrogen receptor modulator, bazedoxifene, improves the consequences of ischemic stroke. Now we aimed to characterize the effects and mechanisms of action of bazedoxifene in cerebral arteries. Male rabbit isolated basilar arteries were used for isometric tension recording and quantitative polymerase chain reaction. Bazedoxifene relaxed cerebral arteries, as 17-ß-estradiol, 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol [estrogen receptor (ER) α agonist], and G1 [G protein-coupled ER (GPER) agonist] did it (4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol > bazedoxifene = G1 > 17-ß-estradiol). 2,3-Bis(4-hydroxyphenyl)-propionitrile (ERß agonist) had no effect. Expression profile of genes encoding for ERα (ESR1), ERß (ESR2), and GPER was GPER > ESR1 > ESR2. As to the endothelial mechanisms, endothelium removal, N-nitro-L-arginine methyl ester, and indomethacin, did not modify the relaxant responses to bazedoxifene. As to the K channels, both a high-K medium and the Kv blocker, 4-aminopyridine, inhibited the bazedoxifene-induced relaxations, whereas tetraethylammonium (nonselective K channel blocker), glibenclamide (selective KATP blocker) or iberiotoxin (selective KCa blocker) were without effect. Bazedoxifene also inhibited both Ca- and Bay K8644-elicited contractions. Therefore, bazedoxifene induces endothelium-independent relaxations of cerebral arteries through (1) activation of GPER and ERα receptors; (2) increase of K conductance through Kv channels; and (3) inhibition of Ca entry through L-type Ca channels. Such a profile is compatible with the beneficial effects of estrogenic compounds (eg, SERMs) on vascular function and, specifically, that concerning the brain. Therefore, bazedoxifene could be useful in the treatment of cerebral disorders in which the cerebrovascular function is compromised (eg, stroke).


Asunto(s)
Arteria Basilar/efectos de los fármacos , Estrógenos/farmacología , Indoles/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Vasodilatación/efectos de los fármacos , Animales , Arteria Basilar/fisiología , Relación Dosis-Respuesta a Droga , Masculino , Técnicas de Cultivo de Órganos , Conejos , Vasodilatación/fisiología
20.
Neurosci Lett ; 575: 53-7, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24861515

RESUMEN

While the estrogen treatment of stroke is under debate, selective estrogen receptor modulators (SERMs) arise as a promising alternative. We hypothesize that bazedoxifene (acetate, BZA), a third generation SERM approved for the treatment of postmenopausal osteoporosis, reduces ischemic brain damage in a rat model of transient focal cerebral ischemia. For comparative purposes, the neuroprotective effect of 17ß-estradiol (E2) has also been assessed. Male Wistar rats underwent 60min middle cerebral artery occlusion (intraluminal thread technique), and grouped according to treatment: vehicle-, E2- and BZA-treated rats. Optimal plasma concentrations of E2 (45.6±7.8pg/ml) and BZA (20.7±2.1ng/ml) were achieved 4h after onset of ischemia, and maintained until the end of the procedure (24h). Neurofunctional score and volume of the damaged brain regions were the main end points. At 24h after ischemia-reperfusion, neurofunctional examination of the animals did not show significant differences among the three experimental groups. By contrast, both E2- and BZA-treated groups showed significantly lower total infarct volumes, BZA acting mainly in the cortical region and E2 acting mainly at the subcortical level. Our results demonstrate that: (1) E2 at physiological plasma levels in female rats is neuroprotective in male rats when given at the acute stage of the ischemic challenge and (2) BZA at clinically relevant plasma levels mimics the neuroprotective action of E2 and could be, therefore, a candidate in stroke treatment.


Asunto(s)
Indoles/uso terapéutico , Ataque Isquémico Transitorio/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Animales , Encéfalo/irrigación sanguínea , Encéfalo/efectos de los fármacos , Encéfalo/patología , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/patología , Estradiol/uso terapéutico , Hemodinámica , Ataque Isquémico Transitorio/patología , Ataque Isquémico Transitorio/fisiopatología , Masculino , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...