Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Swiss J Palaeontol ; 141(1): 12, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844249

RESUMEN

The Alpine Prosanto Formation (Middle Triassic) cropping out in the Ducan region in eastern Switzerland has yielded a rich fish and reptile fauna. Here, we present new pachypleurosaur remains from the upper part of the formation (Early Ladinian), similar to the previously known pachypleurosaurs from the Middle Triassic UNESCO World Heritage Site of Monte San Giorgio in southern Switzerland/northern Italy. From these remains, a new pachypleurosaur species, Prosantosaurus scheffoldi nov. gen. et spec., is described on the basis of six fairly complete skeletons, one disarticulated specimen and an isolated skull. As is typical for pachypleurosaurs and most other Triassic marine reptiles, the new taxon is based to a large degree on a combination of characters (e.g., nasals articulating broadly with the anterior margins of the prefrontals and lacking posterior processes; postorbitals with rounded anterior processes that articulate with the postfrontals anterolaterally) rather than on many unambiguous autapomorphies, although a few of the latter were found including (1) a premaxilla which is excluded from entering both the external and internal nares and (2) a parietal, which is distinctly longer than wide and carrying distinct anterolaterally angled processes. Phylogenetic relationships of the new taxon are tested within European Pachypleurosauria, revealing that the new species is the sister taxon to a clade including Serpianosaurus, Proneusticosaurus, and the monophyletic Neusticosaurus spp. Mapping of palaeogeographic and stratigraphical distribution of valid European pachypleurosaurs shows that a formerly proposed scenario of migration of pachypleurosaurs from the eastern Palaeotethys during the Olenekian into the Germanic Basin and a subsequent diversification and invasion during the Anisian into the intraplatform basins of the South Alpine realm must be re-assessed. The exceptional preservation and preparation of the Ducan fossils further allow the description of tooth replacement patterns for the first time in a European pachypleurosaur species. The "alveolarization" of replacement teeth, the horizontal replacement pattern, and the subsequent remodelling of the functional alveoli during tooth replacement supports the monophyly of Sauropterygia as discussed before. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-022-00254-2.

2.
Sci Rep ; 9(1): 1520, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30728455

RESUMEN

Like other diapsids, Tyrannosaurus rex has two openings in the temporal skull region. In addition, like in other dinosaurs, its snout and lower jaw show large cranial fenestrae. In T. rex, they are thought to decrease skull weight, because, unlike most other amniotes, the skull proportion is immense compared to the body. Understanding morphofunctional complexity of this impressive skull architecture requires a broad scale phylogenetic comparison with skull types different to that of dinosaurs with fundamentally diverging cranial regionalization. Extant fully terrestrial vertebrates (amniotes) provide the best opportunities in that regard, as their skull performance is known from life. We apply for the first time anatomical network analysis to study skull bone integration and modular constructions in tyrannosaur and compare it with five representatives of the major amniote groups in order to get an understanding of the general patterns of amniote skull modularity. Our results reveal that the tyrannosaur has the most modular skull organization among the amniotes included in our study, with an unexpected separation of the snout in upper and lower sub-modules and the presence of a lower adductor chamber module. Independent pathways of bone reduction in opossum and chicken resulted in different degrees of cranial complexity with chicken having a typical sauropsidian pattern. The akinetic skull of opossum, alligator, and leatherback turtle evolved in independent ways mirrored in different patterns of skull modularity. Kinetic forms also show great diversity in modularity. The complex tyrannosaur skull modularity likely represents a refined mosaic of phylogenetic and ecological factors with food processing being probably most important for shaping its skull architecture. Mode of food processing primarily shaped skull integration among amniotes, however, phylogenetic patterns of skull integration are low in our sampling. Our general conclusions on amniote skull integrity are obviously preliminary and should be tested in subsequent studies. As such, this study provides a framework for future research focusing on the evolution of modularity on lower taxonomic levels.


Asunto(s)
Evolución Biológica , Dinosaurios/anatomía & histología , Filogenia , Cráneo/anatomía & histología , Caimanes y Cocodrilos/anatomía & histología , Animales , Pollos/anatomía & histología , Zarigüeyas/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA