Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(9)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32370088

RESUMEN

This work presents a formation method of mechanically-induced long-period fiber gratings using laminated plates. The mechanically-induced long-period fiber grating is temporarily inscribed by compressing the optical fiber between a flat plate and the proposed laminated plate. In turn, the new laminated plate consists of a parallel assembling of single-edged utility blades. We present the experimental characterization of mechanically-induced long-period fiber gratings while employing three laminated plates with a period of 480 ± 20 µm and low duty cycles. These mechanically-induced long-period fiber gratings display a leading rejection band (>15 dB) with a couple of shallow rejection bands (<2 dB) in the range of 1100-1700 nm. This spectral behavior is due to the new mechanical fabrication process that is based on laminated plates that we have proposed, which consists of piling multiple blades with trapezoidal edges that are polished with different levels to obtain different duty-cycles. With the proposed method, we can obtain values of duty-cycles around 10%, much lower than those obtained using traditional methods. Additionally, with this new method, the required mechanical pressure to form the grating is remarkably reduced, which minimizes the probability of the optical fiber failure in the mechanically-induced long-period fiber gratings (MI-LPFGs). Moreover, the proposed mechanically-induced long-period fiber gratings with a single rejection band open the feasibility to implement coarse wavelength division multiplexing systems that are based on long-period fiber gratings.

2.
Opt Lett ; 42(9): 1780-1783, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28454159

RESUMEN

A modal interferometer by a single mechanically induced long-period fiber grating (MI-LPFG) using a half-length coating fiber is presented. The coating material used for this Letter is a film of silica nanoparticles doped with an organic chromophore. The silica nanoparticles, with diameters within the range of 40-50 nm, were deposited over 3.5 cm length of fiber by the dip-coating method, forming a film with a thickness between 500 and 1250 nm. Then the modal interferometer was implemented by inscribing the MI-LPFG over the coated fiber section and a similar fiber length of the uncoated fiber. The experimental results show high-contrast transmission bands, where the position and depth of the absorption envelope band are finely selected by the grating period, the pressure applied, and the film thickness. The novel modal interferometer architecture based on a single MI-LPFG, combined with a functionalized nanoparticles coating film, offers an attractive platform for the development of fiber sensors and other fiber-based devices.

3.
Sensors (Basel) ; 17(2)2017 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-28146068

RESUMEN

This paper describes the design, fabrication, and testing of two hollow prisms. One is a prism with a grating glued to its hypotenuse. This ensemble, prism + grating, is called a grism. It can be applied as an on-axis tunable spectrometer. The other hollow prism is a constant deviation one called a Pellin-Broca. It can be used as a tunable dispersive element in a spectrometer with no moving parts. The application of prisms as temperature sensors is shown.

4.
Sensors (Basel) ; 12(1): 415-28, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22368477

RESUMEN

A micro-displacement sensor consisting of a fiber-loop made with a tapered fiber is reported. The sensor operation is based on the interaction between the fundamental cladding mode propagating through the taper waist and higher order cladding modes excited when the taper is deformed to form a loop. As a result, a transmission spectrum with several notches is observed, where the notch wavelength resonances shift as a function of the loop diameter. The loop diameter is varied by the spatial displacement of one end of the fiber-loop attached to a linear translation stage. In a displacement range of 3.125 mm the maximum wavelength shift is 360.93 nm, with 0.116 nm/µm sensitivity. By using a 1,280 nm broadband low-power LED source and a single Ge-photodetector in a power transmission sensor setup, a sensitivity in the order of 2.7 nW/µm is obtained in ≈ 1 mm range. The proposed sensor is easy to implement and has a plenty of room to improve its performance.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Microtecnología/instrumentación , Refractometría , Procesamiento de Señales Asistido por Computador , Análisis Espectral , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA