Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 158, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252271

RESUMEN

Astaxanthin is one of the most attractive carotenoids due to its high antioxidant activity and beneficial biological properties, while Xanthophyllomyces dendrorhous is one of its main microbial sources. Since astaxanthin is synthesized as a response to oxidative stress, several oxidative agents have been evaluated to increase X. dendrorhous astaxanthin yields. However, the extent of the stimulation is determined by the cellular damage caused by the applied oxidative agent. Phytohormones have also been reported as stimulants of astaxanthin biosynthesis acting directly on its metabolic pathway and indirectly promoting cellular resistance to reactive oxygen species. We reasoned that both oxidative agents and phytohormones lead to increased astaxanthin synthesis, but the latter could mitigate the drawbacks of the former. Thus, here, the stimulation on astaxanthin biosynthesis, as well as the cellular and transcriptional responses of wild type X. dendrorhous to phytohormones (6-benzylaminopurine, 6-BAP; abscisic acid, ABA; and indole-3-acetic acid, IAA), and oxidative agents (glutamate, menadione, H2O2, and/or Fe2+) were evaluated as a single or combined treatments. ABA and 6-BAP were the best individual stimulants leading to 2.24- and 2.60-fold astaxanthin biosynthesis increase, respectively. Nevertheless, the effect of combined 6-BAP and H2O2 led to a 3.69-fold astaxanthin synthesis increase (0.127 ± 0.018 mg astaxanthin/g biomass). Moreover, cell viability (> 82.75%) and mitochondrial activity (> 82.2%) remained almost intact in the combined treatment (6-BAP + H2O2) compared to control (< 52.17% cell viability; < 85.3% mitochondrial activity). On the other hand, mRNA levels of hmgR, idi, crtYB, crtR, and crtS, genes of the astaxanthin biosynthetic pathway, increased transiently along X. dendrorhous fermentation due to stimulations assayed in this study. KEY POINTS: • Combined 6-BAP and H2O2 is the best treatment to increase astaxanthin yields in X. dendrorhous. • 6-BAP preserves cell integrity under oxidative H2O2 stress conditions. • 6-BAP and H2O2 increase transcriptional responses of hmgR, idi, and crt family genes transiently.


Asunto(s)
Basidiomycota , Compuestos de Bencilo , Estimulantes del Sistema Nervioso Central , Reguladores del Crecimiento de las Plantas , Purinas , Peróxido de Hidrógeno , Xantófilas
2.
Microb Cell Fact ; 20(1): 175, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488760

RESUMEN

Astaxanthin is a carotenoid with a number of assets useful for the food, cosmetic and pharmaceutical industries. Nowadays, it is mainly produced by chemical synthesis. However, the process leads to an enantiomeric mixture where the biologically assimilable forms (3R, 3'R or 3S, 3'S) are a minority. Microbial production of (3R, 3'R) astaxanthin by Xanthophyllomyces dendrorhous is an appealing alternative due to its fast growth rate and easy large-scale production. In order to increase X. dendrorhous astaxanthin yields, random mutant strains able to produce from 6 to 10 mg/g dry mass have been generated; nevertheless, they often are unstable. On the other hand, site-directed mutant strains have also been obtained, but they increase only the yield of non-astaxanthin carotenoids. In this review, we insightfully analyze the metabolic carbon flow converging in astaxanthin biosynthesis and, by integrating the biological features of X. dendrorhous with available metabolic, genomic, transcriptomic, and proteomic data, as well as the knowledge gained with random and site-directed mutants that lead to increased carotenoids yield, we propose new metabolic engineering targets to increase astaxanthin biosynthesis.


Asunto(s)
Basidiomycota/metabolismo , Ingeniería Metabólica/métodos , Xantófilas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA