Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Appl Physiol (1985) ; 129(3): 492-499, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32702276

RESUMEN

Subjects with severe and very severe chronic obstructive pulmonary disease (COPD) present thoracoabdominal asynchrony (TAA) that reduces ventilatory efficiency and exercise capacity. However, no therapeutic intervention has focused on reducing TAA. The purpose of this study was to evaluate the effects of elastic tape (ET) on thoracoabdominal mechanics, dyspnea symptoms, exercise capacity, and physical activity level in nonobese male subjects with severe-to-very severe COPD. This crossover, randomized trial included nonobese males with severe to very severe COPD. ET was placed on the chest wall and abdomen to reduce TAA. Subjects were evaluated at three hospital visits, each 7 days apart. At visit 1, thoracoabdominal kinematic and pulmonary ventilation were evaluated by optoelectronic plethysmography and electrical impedance tomography, respectively, both at rest and during isoload exercise testing. At visit 2, a cardiopulmonary exercise test (CPET; 10 W/min) was performed until exhaustion. Between the visits, subjects used a physical activity monitor (PAM) (at least 5 days of measurement; 10 h/day). At visit 3, all the tests were repeated in the opposite order of the previous randomization. During the isoload exercise, subjects with ET presented lower tidal and minute volumes (P = 0.01) and reduced TAA (P = 0.02) and dyspnea (P = 0.04). During the CPET, subjects with ET presented an increase in peak oxygen consumption (V̇o2peak; L/min and mL·kg-1·min-1; P = 0.01), test duration (P = 0.009), and maximal load (P = 0.03). Moderate and vigorous physical activity (MVPA), which was evaluated by the PAM, was also increased in subjects with ET (P = 0.01). ET reduced TAA and dyspnea and increased exercise capacity and the duration of MVPA in nonobese male subjects with severe-to-very severe COPDNEW & NOTEWORTHY Elastic tape can be used as a new and low-cost intervention to reduce thoracoabdominal asynchrony and sedentary behavior as well as improve exercise capacity and physical activity level in nonobese male subjects with severe-to-very severe chronic obstructive pulmonary disease.


Asunto(s)
Tolerancia al Ejercicio , Enfermedad Pulmonar Obstructiva Crónica , Estudios Cruzados , Disnea , Ejercicio Físico , Prueba de Esfuerzo , Humanos , Masculino
2.
Anesth Analg ; 129(6): 1564-1573, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31743177

RESUMEN

BACKGROUND: Pneumoperitoneum and nonphysiological positioning required for robotic surgery increase cardiopulmonary risk because of the use of larger airway pressures (Paws) to maintain tidal volume (VT). However, the quantitative partitioning of respiratory mechanics and transpulmonary pressure (PL) during robotic surgery is not well described. We tested the following hypothesis: (1) the components of driving pressure (transpulmonary and chest wall components) increase in a parallel fashion at robotic surgical stages (Trendelenburg and robot docking); and (2) deep, when compared to routine (moderate), neuromuscular blockade modifies those changes in PLs as well as in regional respiratory mechanics. METHODS: We studied 35 American Society of Anesthesiologists (ASA) I-II patients undergoing elective robotic surgery. Airway and esophageal balloon pressures and respiratory flows were measured to calculate respiratory mechanics. Regional lung aeration and ventilation was assessed with electrical impedance tomography and level of neuromuscular blockade with acceleromyography. During robotic surgical stages, 2 crossover randomized groups (conditions) of neuromuscular relaxation were studied: Moderate (1 twitch in the train-of-four stimulation) and Deep (1-2 twitches in the posttetanic count). RESULTS: Pneumoperitoneum was associated with increases in driving pressure, tidal changes in PL, and esophageal pressure (Pes). Steep Trendelenburg position during robot docking was associated with further worsening of the respiratory mechanics. The fraction of driving pressures that partitioned to the lungs decreased from baseline (63% ± 15%) to Trendelenburg position (49% ± 14%, P < .001), due to a larger increase in chest wall elastance (Ecw; 12.7 ± 7.6 cm H2O·L) than in lung elastance (EL; 4.3 ± 5.0 cm H2O·L, P < .001). Consequently, from baseline to Trendelenburg, the component of Paw affecting the chest wall increased by 6.6 ± 3.1 cm H2O, while PLs increased by only 3.4 ± 3.1 cm H2O (P < .001). PL and driving pressures were larger at surgery end than at baseline and were accompanied by dorsal aeration loss. Deep neuromuscular blockade did not change respiratory mechanics, regional aeration and ventilation, and hemodynamics. CONCLUSIONS: In robotic surgery with pneumoperitoneum, changes in ventilatory driving pressures during Trendelenburg and robot docking are distributed less to the lungs than to the chest wall as compared to routine mechanical ventilation for supine patients. This effect of robotic surgery derives from substantially larger increases in Ecw than ELs and reduces the risk of excessive PLs. Deep neuromuscular blockade does not meaningfully change global or regional lung mechanics.


Asunto(s)
Laparoscopía , Monitoreo Intraoperatorio/métodos , Monitoreo Neuromuscular , Neumoperitoneo Artificial , Respiración Artificial , Mecánica Respiratoria , Procedimientos Quirúrgicos Robotizados , Anciano , Boston , Estudios Cruzados , Femenino , Inclinación de Cabeza , Humanos , Laparoscopía/efectos adversos , Masculino , Persona de Mediana Edad , Posicionamiento del Paciente , Neumoperitoneo Artificial/efectos adversos , Presión , Estudios Prospectivos , Respiración Artificial/efectos adversos , Factores de Riesgo , Procedimientos Quirúrgicos Robotizados/efectos adversos , Factores de Tiempo , Resultado del Tratamiento , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología
3.
J Comput Assist Tomogr ; 42(6): 866-872, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30371620

RESUMEN

OBJECTIVE: The aims of this study were to investigate the ability of contrast-enhanced dual-energy computed tomography (DECT) for assessing regional perfusion in a model of acute lung injury, using dynamic first-pass perfusion CT (DynCT) as the criterion standard and to evaluate if changes in lung perfusion caused by prone ventilation are similarly demonstrated by DECT and DynCT. METHODS: This was an institutional review board-approved study, compliant with guidelines for humane care of laboratory animals. A ventilator-induced lung injury protocol was applied to 6 landrace pigs. Perfused blood volume (PBV) and pulmonary blood flow (PBF) were respectively quantified by DECT and DynCT, in supine and prone positions. The lungs were segmented in equally sized regions of interest, namely, dorsal, middle, and ventral. Perfused blood volume and PBF values were normalized by lung density. Regional air fraction (AF) was assessed by triple-material decomposition DECT. Per-animal correlation between PBV and PBF was assessed with Pearson R. Regional differences in PBV, PBF, and AF were evaluated with 1-way analysis of variance and post hoc linear trend analysis (α = 5%). RESULTS: Mean correlation coefficient between PBV and PBF was 0.70 (range, 0.55-0.98). Higher PBV and PBF values were observed in dorsal versus ventral regions. Dorsal-to-ventral linear trend slopes were -10.24 mL/100 g per zone for PBV (P < 0.001) and -223.0 mL/100 g per minute per zone for PBF (P < 0.001). Prone ventilation also revealed higher PBV and PBF in dorsal versus ventral regions. Dorsal-to-ventral linear trend slopes were -16.16 mL/100 g per zone for PBV (P < 0.001) and -108.2 mL/100 g per minute per zone for PBF (P < 0.001). By contrast, AF was lower in dorsal versus ventral regions in supine position, with dorsal-to-ventral linear trend slope of +5.77%/zone (P < 0.05). Prone ventilation was associated with homogenization of AF distribution among different regions (P = 0.74). CONCLUSIONS: Dual-energy computed tomography PBV is correlated with DynCT-PBF in a model of acute lung injury, and able to demonstrate regional differences in pulmonary perfusion. Perfusion was higher in the dorsal regions, irrespectively to decubitus, with more homogeneous lung aeration in prone position.


Asunto(s)
Lesión Pulmonar Aguda/diagnóstico por imagen , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Medios de Contraste , Modelos Animales de Enfermedad , Valor Predictivo de las Pruebas , Circulación Pulmonar , Porcinos
4.
Crit Care Med ; 45(8): 1374-1381, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28708679

RESUMEN

OBJECTIVES: Atelectasis develops in critically ill obese patients when undergoing mechanical ventilation due to increased pleural pressure. The current study aimed to determine the relationship between transpulmonary pressure, lung mechanics, and lung morphology and to quantify the benefits of a decremental positive end-expiratory pressure trial preceded by a recruitment maneuver. DESIGN: Prospective, crossover, nonrandomized interventional study. SETTING: Medical and Surgical Intensive Care Units at Massachusetts General Hospital (Boston, MA) and University Animal Research Laboratory (São Paulo, Brazil). PATIENTS/SUBJECTS: Critically ill obese patients with acute respiratory failure and anesthetized swine. INTERVENTIONS: Clinical data from 16 mechanically ventilated critically ill obese patients were analyzed. An animal model of obesity with reversible atelectasis was developed by placing fluid filled bags on the abdomen to describe changes of lung mechanics, lung morphology, and pulmonary hemodynamics in 10 swine. MEASUREMENTS AND MAIN RESULTS: In obese patients (body mass index, 48 ± 11 kg/m), 21.7 ± 3.7 cm H2O of positive end-expiratory pressure resulted in the lowest elastance of the respiratory system (18.6 ± 6.1 cm H2O/L) after a recruitment maneuver and decremental positive end-expiratory pressure and corresponded to a positive (2.1 ± 2.2 cm H2O) end-expiratory transpulmonary pressure. Ventilation at lowest elastance positive end-expiratory pressure preceded by a recruitment maneuver restored end-expiratory lung volume (30.4 ± 9.1 mL/kg ideal body weight) and oxygenation (273.4 ± 72.1 mm Hg). In the swine model, lung collapse and intratidal recruitment/derecruitment occurred when the positive end-expiratory transpulmonary pressure decreased below 2-4 cm H2O. After the development of atelectasis, a decremental positive end-expiratory pressure trial preceded by lung recruitment identified the positive end-expiratory pressure level (17.4 ± 2.1 cm H2O) needed to restore poorly and nonaerated lung tissue, reestablishing lung elastance and oxygenation while avoiding increased pulmonary vascular resistance. CONCLUSIONS: In obesity, low-to-negative values of transpulmonary pressure predict lung collapse and intratidal recruitment/derecruitment. A decremental positive end-expiratory pressure trial preceded by a recruitment maneuver reverses atelectasis, improves lung mechanics, distribution of ventilation and oxygenation, and does not increase pulmonary vascular resistance.


Asunto(s)
Enfermedad Crítica , Pulmón/patología , Obesidad/fisiopatología , Atelectasia Pulmonar/fisiopatología , Respiración Artificial/efectos adversos , Animales , Modelos Animales de Enfermedad , Impedancia Eléctrica , Humanos , Unidades de Cuidados Intensivos , Pulmón/diagnóstico por imagen , Obesidad/terapia , Respiración de Presión Positiva Intrínseca , Estudios Prospectivos , Mecánica Respiratoria , Porcinos , Tomografía Computarizada por Rayos X
5.
Am J Respir Crit Care Med ; 196(5): 590-601, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28212050

RESUMEN

RATIONALE: Spontaneous breathing during mechanical ventilation increases transpulmonary pressure and Vt, and worsens lung injury. Intuitively, controlling Vt and transpulmonary pressure might limit injury caused by added spontaneous effort. OBJECTIVES: To test the hypothesis that, during spontaneous effort in injured lungs, limitation of Vt and transpulmonary pressure by volume-controlled ventilation results in less injurious patterns of inflation. METHODS: Dynamic computed tomography was used to determine patterns of regional inflation in rabbits with injured lungs during volume-controlled or pressure-controlled ventilation. Transpulmonary pressure was estimated by using esophageal balloon manometry [Pl(es)] with and without spontaneous effort. Local dependent lung stress was estimated as the swing (inspiratory change) in transpulmonary pressure measured by intrapleural manometry in dependent lung and was compared with the swing in Pl(es). Electrical impedance tomography was performed to evaluate the inflation pattern in a larger animal (pig) and in a patient with acute respiratory distress syndrome. MEASUREMENTS AND MAIN RESULTS: Spontaneous breathing in injured lungs increased Pl(es) during pressure-controlled (but not volume-controlled) ventilation, but the pattern of dependent lung inflation was the same in both modes. In volume-controlled ventilation, spontaneous effort caused greater inflation and tidal recruitment of dorsal regions (greater than twofold) compared with during muscle paralysis, despite the same Vt and Pl(es). This was caused by higher local dependent lung stress (measured by intrapleural manometry). In injured lungs, esophageal manometry underestimated local dependent pleural pressure changes during spontaneous effort. CONCLUSIONS: Limitation of Vt and Pl(es) by volume-controlled ventilation could not eliminate harm caused by spontaneous breathing unless the level of spontaneous effort was lowered and local dependent lung stress was reduced.


Asunto(s)
Lesión Pulmonar/fisiopatología , Respiración Artificial/métodos , Mecánica Respiratoria/fisiología , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Animales , Modelos Animales de Enfermedad , Humanos , Lesión Pulmonar/diagnóstico por imagen , Lesión Pulmonar/etiología , Masculino , Conejos , Respiración Artificial/efectos adversos , Tomografía Computarizada por Rayos X
6.
Thorax ; 72(1): 83-93, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27596161

RESUMEN

Electrical impedance tomography (EIT) has undergone 30 years of development. Functional chest examinations with this technology are considered clinically relevant, especially for monitoring regional lung ventilation in mechanically ventilated patients and for regional pulmonary function testing in patients with chronic lung diseases. As EIT becomes an established medical technology, it requires consensus examination, nomenclature, data analysis and interpretation schemes. Such consensus is needed to compare, understand and reproduce study findings from and among different research groups, to enable large clinical trials and, ultimately, routine clinical use. Recommendations of how EIT findings can be applied to generate diagnoses and impact clinical decision-making and therapy planning are required. This consensus paper was prepared by an international working group, collaborating on the clinical promotion of EIT called TRanslational EIT developmeNt stuDy group. It addresses the stated needs by providing (1) a new classification of core processes involved in chest EIT examinations and data analysis, (2) focus on clinical applications with structured reviews and outlooks (separately for adult and neonatal/paediatric patients), (3) a structured framework to categorise and understand the relationships among analysis approaches and their clinical roles, (4) consensus, unified terminology with clinical user-friendly definitions and explanations, (5) a review of all major work in thoracic EIT and (6) recommendations for future development (193 pages of online supplements systematically linked with the chief sections of the main document). We expect this information to be useful for clinicians and researchers working with EIT, as well as for industry producers of this technology.


Asunto(s)
Impedancia Eléctrica , Enfermedades Pulmonares/diagnóstico por imagen , Enfermedades Pulmonares/fisiopatología , Tomografía , Adolescente , Adulto , Gasto Cardíaco , Niño , Preescolar , Consenso , Humanos , Lactante , Recién Nacido , Enfermedades Pulmonares/terapia , Circulación Pulmonar , Respiración Artificial , Terminología como Asunto , Tomografía/métodos
7.
Crit Care Med ; 44(8): e678-88, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27002273

RESUMEN

OBJECTIVES: We recently described how spontaneous effort during mechanical ventilation can cause "pendelluft," that is, displacement of gas from nondependent (more recruited) lung to dependent (less recruited) lung during early inspiration. Such transfer depends on the coexistence of more recruited (source) liquid-like lung regions together with less recruited (target) solid-like lung regions. Pendelluft may improve gas exchange, but because of tidal recruitment, it may also contribute to injury. We hypothesize that higher positive end-expiratory pressure levels decrease the propensity to pendelluft and that with lower positive end-expiratory pressure levels, pendelluft is associated with improved gas exchange but increased tidal recruitment. DESIGN: Crossover design. SETTING: University animal research laboratory. SUBJECTS: Anesthetized landrace pigs. INTERVENTIONS: Surfactant depletion was achieved by saline lavage in anesthetized pigs, and ventilator-induced lung injury was produced by ventilation with high tidal volume and low positive end-expiratory pressure. Ventilation was continued in each of four conditions: positive end-expiratory pressure (low or optimized positive end-expiratory pressure after recruitment) and spontaneous breathing (present or absent). Tidal recruitment was assessed using dynamic CT and regional ventilation/perfusion using electric impedance tomography. Esophageal pressure was measured using an esophageal balloon manometer. MEASUREMENTS AND RESULTS: Among the four conditions, spontaneous breathing at low positive end-expiratory pressure not only caused the largest degree of pendelluft, which was associated with improved ventilation/perfusion matching and oxygenation, but also generated the greatest tidal recruitment. At low positive end-expiratory pressure, paralysis worsened oxygenation but reduced tidal recruitment. Optimized positive end-expiratory pressure decreased the magnitude of spontaneous efforts (measured by esophageal pressure) despite using less sedation, from -5.6 ± 1.3 to -2.0 ± 0.7 cm H2O, while concomitantly reducing pendelluft and tidal recruitment. No pendelluft was observed in the absence of spontaneous effort. CONCLUSIONS: Spontaneous effort at low positive end-expiratory pressure improved oxygenation but promoted tidal recruitment associated with pendelluft. Optimized positive end-expiratory pressure (set after lung recruitment) may reverse the harmful effects of spontaneous breathing by reducing inspiratory effort, pendelluft, and tidal recruitment.


Asunto(s)
Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Lesión Pulmonar Inducida por Ventilación Mecánica/epidemiología , Animales , Femenino , Pulmón/fisiopatología , Respiración con Presión Positiva/métodos , Intercambio Gaseoso Pulmonar/fisiología , Surfactantes Pulmonares/metabolismo , Síndrome de Dificultad Respiratoria , Mecánica Respiratoria/fisiología , Porcinos , Volumen de Ventilación Pulmonar
8.
Am J Respir Crit Care Med ; 188(12): 1420-7, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24199628

RESUMEN

RATIONALE: In normal lungs, local changes in pleural pressure (P(pl)) are generalized over the whole pleural surface. However, in a patient with injured lungs, we observed (using electrical impedance tomography) a pendelluft phenomenon (movement of air within the lung from nondependent to dependent regions without change in tidal volume) that was caused by spontaneous breathing during mechanical ventilation. OBJECTIVES: To test the hypotheses that in injured lungs negative P(pl) generated by diaphragm contraction has localized effects (in dependent regions) that are not uniformly transmitted, and that such localized changes in P(pl) cause pendelluft. METHODS: We used electrical impedance tomography and dynamic computed tomography (CT) to analyze regional inflation in anesthetized pigs with lung injury. Changes in local P(pl) were measured in nondependent versus dependent regions using intrabronchial balloon catheters. The airway pressure needed to achieve comparable dependent lung inflation during paralysis versus spontaneous breathing was estimated. MEASUREMENTS AND MAIN RESULTS: In all animals, spontaneous breathing caused pendelluft during early inflation, which was associated with more negative local P(pl) in dependent regions versus nondependent regions (-13.0 ± 4.0 vs. -6.4 ± 3.8 cm H2O; P < 0.05). Dynamic CT confirmed pendelluft, which occurred despite limitation of tidal volume to less than 6 ml/kg. Comparable inflation of dependent lung during paralysis required almost threefold greater driving pressure (and tidal volume) versus spontaneous breathing (28.0 ± 0.5 vs. 10.3 ± 0.6 cm H2O, P < 0.01; 14.8 ± 4.6 vs. 5.8 ± 1.6 ml/kg, P < 0.05). CONCLUSIONS: Spontaneous breathing effort during mechanical ventilation causes unsuspected overstretch of dependent lung during early inflation (associated with reciprocal deflation of nondependent lung). Even when not increasing tidal volume, strong spontaneous effort may potentially enhance lung damage.


Asunto(s)
Pulmón/fisiopatología , Pleura/fisiopatología , Respiración con Presión Positiva , Presión , Respiración , Síndrome de Dificultad Respiratoria/fisiopatología , Adulto , Animales , Humanos , Masculino , Pletismografía de Impedancia , Síndrome de Dificultad Respiratoria/terapia , Porcinos , Volumen de Ventilación Pulmonar , Tomografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...