Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Echocardiography ; 41(1): e15742, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284680

RESUMEN

BACKGROUND: The LV myocardial strain and hemodynamic forces (HDFs) are innovative markers of LV function. Aortic coarctation is safely repaired in infancy; however, mortality and morbidity remain increased in later life. The study investigated the role of left ventricular myocardial deformation and HDFs in asymptomatic patients who underwent successful aortic coarctation repair. METHODS: Clinical and echocardiographic data were analyzed from 42 repaired CoA, 32 ± 20 years after surgery, 2D echocardiographic global longitudinal strain (GLS), circumferential strain (GCS) and HDFs were determined. CoA patients were compared with 42 patients affected by blood hypertension and 84 healthy controls; all matched for age and gender. RESULTS: All groups had normal LV ejection fraction (LVEF), dimensions, and volumes. CoA patients showed a significantly higher rate of LV mass indexed (p < .001) and left atrial volumes indexed (p < .001). LV myocardial and endocardial global longitudinal and circumferential strain were decreased in CoA patients (p < .001, p < .001; p = .032 and p < .001, respectively). HDF parameters such as LV longitudinal force, LV systolic longitudinal force and LV impulse (LVim) were uniformly reduced (p = .006, p = .001, and p = .001, respectively). LV myocardial strain and HDF parameter values were independently associated with hospitalization for heart failure on univariable Cox regression analysis. CONCLUSION: Despite preserved LVEF, patients with CoA had lower LV myocardial strain and HDF parameters values, independently associated with hospitalization for heart failure.


Asunto(s)
Coartación Aórtica , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Adulto , Humanos , Coartación Aórtica/complicaciones , Coartación Aórtica/diagnóstico por imagen , Coartación Aórtica/cirugía , Función Ventricular Izquierda , Volumen Sistólico , Ecocardiografía/métodos , Hemodinámica , Insuficiencia Cardíaca/complicaciones
2.
Artículo en Inglés | MEDLINE | ID: mdl-37754581

RESUMEN

Cardiovascular disease (CVD) is still a leading cause of morbidity and mortality, despite all the progress achieved as regards to both prevention and treatment. Having high levels of lipoprotein(a) [Lp(a)] is a risk factor for cardiovascular disease that operates independently. It can increase the risk of developing cardiovascular disease even when LDL cholesterol (LDL-C) levels are within the recommended range, which is referred to as residual cardiovascular risk. Lp(a) is an LDL-like particle present in human plasma, in which a large plasminogen-like glycoprotein, apolipoprotein(a) [Apo(a)], is covalently bound to Apo B100 via one disulfide bridge. Apo(a) contains one plasminogen-like kringle V structure, a variable number of plasminogen-like kringle IV structures (types 1-10), and one inactive protease region. There is a large inter-individual variation of plasma concentrations of Lp(a), mainly ascribable to genetic variants in the Lp(a) gene: in the general po-pulation, Lp(a) levels can range from <1 mg/dL to >1000 mg/dL. Concentrations also vary between different ethnicities. Lp(a) has been established as one of the risk factors that play an important role in the development of atherosclerotic plaque. Indeed, high concentrations of Lp(a) have been related to a greater risk of ischemic CVD, aortic valve stenosis, and heart failure. The threshold value has been set at 50 mg/dL, but the risk may increase already at levels above 30 mg/dL. Although there is a well-established and strong link between high Lp(a) levels and coronary as well as cerebrovascular disease, the evidence regarding incident peripheral arterial disease and carotid atherosclerosis is not as conclusive. Because lifestyle changes and standard lipid-lowering treatments, such as statins, niacin, and cholesteryl ester transfer protein inhibitors, are not highly effective in reducing Lp(a) levels, there is increased interest in developing new drugs that can address this issue. PCSK9 inhibitors seem to be capable of reducing Lp(a) levels by 25-30%. Mipomersen decreases Lp(a) levels by 25-40%, but its use is burdened with important side effects. At the current time, the most effective and tolerated treatment for patients with a high Lp(a) plasma level is apheresis, while antisense oligonucleotides, small interfering RNAs, and microRNAs, which reduce Lp(a) levels by targeting RNA molecules and regulating gene expression as well as protein production levels, are the most widely explored and promising perspectives. The aim of this review is to provide an update on the current state of the art with regard to Lp(a) pathophysiological mechanisms, focusing on the most effective strategies for lowering Lp(a), including new emerging alternative therapies. The purpose of this manuscript is to improve the management of hyperlipoproteinemia(a) in order to achieve better control of the residual cardiovascular risk, which remains unacceptably high.


Asunto(s)
Enfermedades Cardiovasculares , Lipoproteína(a) , Humanos , Plasminógeno , Proproteína Convertasa 9 , Factores de Riesgo , Serina Proteasas
3.
Front Cardiovasc Med ; 10: 1272288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38322275

RESUMEN

Background and aims: Epidemiology of atherosclerotic cardiovascular disease might be different in patients with polygenic hypercholesterolemia plus high levels (≥30 mg/dl) of Lp(a) (H-Lpa) than in those with polygenic hypercholesterolemia alone (H-LDL). We compared the incidence of peripheral artery disease (PAD), coronary artery disease (CAD), and cerebrovascular disease (CVD) in patients with H-Lpa and in those with H-LDL. Methods: Retrospective analysis of demographics, risk factors, vascular events, therapy, and lipid profile in outpatient clinical data. Inclusion criteria was adult age, diagnosis of polygenic hypercholesterolemia, and both indication and availability for Lp(a) measurement. Results: Medical records of 258 patients with H-Lpa and 290 H-LDL were reviewed for occurrence of vascular events. The median duration of follow-up was 10 years (IQR 3-16). In spite of a similar reduction of LDL cholesterol, vascular events occurred more frequently, and approximately 7 years earlier (P = 0.024) in patients with H-Lpa than in H-LDL (HR 1.96 1.21-3.17, P = 0.006). The difference was around 10 years for acute events (TIA, Stroke, acute coronary events) and one year for chronic ones (P = 0.023 and 0.525, respectively). Occurrence of acute CAD was higher in H-Lpa men (HR 3.1, 95% CI 1.2-7.9, P = 0.007) while, among women, PAD was observed exclusively in H-Lpa subjects with smoking habits (P = 0.009). Conclusions: Patients with high Lp(a) levels suffer from a larger and earlier burden of the disease compared to those with polygenic hypercholesterolemia alone. These patients are at higher risk of CAD if they are men, and of PAD if they are women.

4.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769118

RESUMEN

Hyperlipidemia is a major risk factor for cardiovascular morbidity and mortality. Statins are the first-choice therapy for dyslipidemias and are considered the cornerstone of atherosclerotic cardiovascular disease (ASCVD) in both primary and secondary prevention. Despite the statin-therapy-mediated positive effects on cardiovascular events, patient compliance is often poor. Statin-associated muscle symptoms (SAMS) are the most common side effect associated with treatment discontinuation. SAMS, which range from mild-to-moderate muscle pain, weakness, or fatigue to potentially life-threatening rhabdomyolysis, are reported by 10% to 25% of patients receiving statin therapy. There are many risk factors associated with patient features and hypolipidemic agents that seem to increase the risk of developing SAMS. Due to the lack of a "gold standard", the diagnostic test for SAMS is based on a clinical criteria score, which is independent of creatine kinase (CK) elevation. Mechanisms that underlie the pathogenesis of SAMS remain almost unclear, though a high number of risk factors may increase the probability of myotoxicity induced by statin therapy. Some of these, related to pharmacokinetic properties of statins and to concomitant therapies or patient characteristics, may affect statin bioavailability and increase vulnerability to high-dose statins.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Enfermedades Musculares/inducido químicamente , Animales , Humanos , Hiperlipidemias/tratamiento farmacológico , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/epidemiología , Enfermedades Musculares/terapia , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...