Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38690939

RESUMEN

BACKGROUND: High levels of testosterone (Testo) are associated with cardiovascular risk by increasing reactive oxygen species (ROS) formation. NADPH oxidases (NOX) are the major source of ROS in the vasculature in cardiovascular diseases. NOX4 is a unique isotype, which produces hydrogen peroxide (H2O2), and its participation in cardiovascular biology is controversial. So far, it is unclear whether NOX4 protects from Testo-induced endothelial injury. Thus, we hypothesized that supraphysiological levels of Testo induce endothelial NOX4 expression to attenuate endothelial injury. METHODS: Human Mesenteric Vascular Endothelial Cells (HMEC) and Human Umbilical Vein Endothelial Cells (HUVEC) were treated with Testo (10-7 M) with or without a NOX4 inhibitor [GLX351322 (10-4 M)] or NOX4 siRNA. In vivo, 10-week-old C57Bl/6J male mice were treated with Testo (10 mg/kg) for 30 days to study endothelial function. RESULTS: Testo increased mRNA and protein levels of NOX4 in HMEC and HUVEC. Testo increased superoxide anion (O2-) and H2O2 production, which were abolished by NOX1 and NOX4 inhibition, respectively. Testo also attenuated bradykinin-induced NO production, which was further impaired by NOX4 inhibition. In vivo, Testo decreased H2O2 production in aortic segments and triggered endothelial dysfunction [decreased relaxation to acetylcholine (ACh)], which was further impaired by GLX351322 and by a superoxide dismutase and catalase mimetic (EUK134). Finally, Testo led to a dysregulated endothelial cells migration, which was exacerbated by GLX351322. CONCLUSION: These data indicate that supraphysiological levels of Testo increase the endothelial expression and activity of NOX4 to counterbalance the deleterious effects caused by Testo in endothelial function.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38643455

RESUMEN

Estrone (E1) constitutes the primary component in oral conjugated equine estrogens (CEEs) and serves as the principal estrogen precursor in the female circulation in the post-menopause. E1 induces endothelium-dependent vasodilation and activate PI3K/NO/cGMP signaling. To assess whether E1 mitigates vascular dysfunction associated with postmenopause and explore the underlying mechanisms, we examined the vascular effects of E1 in ovariectomized (OVX) rats, a postmenopausal experimental model. Blood pressure was measured using tail-cuff plethysmography, and aortic rings were isolated to assess responses to phenylephrine, acetylcholine (ACh), and sodium nitroprusside. Responses to ACh in rings pre-incubated with superoxide dismutase (SOD), catalase (CAT), or apocynin were also evaluated. Protein expression of SOD, CAT, NOX1, NOX2, and NOX4 was determined by Western blotting. E1 treatment resulted in decreased body weight and retroperitoneal fat, increased uterine weight, and prevented elevated blood pressure in the OVX group. Furthermore, E1 improved endothelium-dependent ACh vasodilation, activated compensatory antioxidant mechanisms - i.e. increased SOD and CAT antioxidant enzymes activity, and decreased NOX4 expression. This, in turn, helped prevent oxidative stress and endothelial dysfunction in OVX rats. Additionally, E1 treatment reversed the increased total LDL cholesterol observed in the OVX group. The findings underscore protective effects of E1 on the cardiovascular system, counteracting OVX-related oxidative stress and endothelial dysfunction in Wistar rats. E1 exhibits promising therapeutic benefits for managing cardiovascular health, particularly in postmenopausal conditions.

3.
Biochem Pharmacol ; 224: 116245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685281

RESUMEN

Cardiovascular disease (CVD) is the leading cause of death in rheumatoid arthritis (RA). Resistin is an adipokine that induces adipose tissue inflammation and activation of monocytes/macrophages via adenylate cyclase-associated protein-1 (CAP1). Resistin levels are increased in RA and might cause perivascular adipose tissue (PVAT) dysfunction, leading to vascular damage and CVD. This study aimed to investigate the role of resistin in promoting PVAT dysfunction by increasing local macrophage and inflammatory cytokines content in antigen-induced arthritis (AIA). Resistin pharmacological effects were assessed by using C57Bl/6J wild-type (WT) mice, humanized resistin mice expressing human resistin in monocytes-macrophages (hRTN+/-/-), and resistin knockout mice (RTN-/-) with AIA and respective controls. We investigated AIA disease activity and functional, cellular, and molecular parameters of the PVAT. Resistin did not contribute to AIA disease activity and its concentrations were augmented in the PVAT and plasma of WT AIA and hRTN+/-/- AIA animals. In vitro exposure of murine arteries to resistin impaired vascular function by decreasing the anti-contractile effect of PVAT. WT AIA mice and hRTN+/-/- AIA mice exhibited PVAT dysfunction and knockdown of resistin prevented it. Macrophage-derived cytokines, markers of types 1 and 2 macrophages, and CAP1 expression were increased in the PVAT of resistin humanized mice with AIA, but not in knockout mice for resistin. This study reveals that macrophage-derived resistin promotes PVAT inflammation and dysfunction regardless of AIA disease activity. Resistin might represent a translational target to reduce RA-driven vascular dysfunction and CVD.


Asunto(s)
Tejido Adiposo , Artritis Experimental , Macrófagos , Ratones Endogámicos C57BL , Resistina , Animales , Resistina/metabolismo , Resistina/genética , Humanos , Tejido Adiposo/metabolismo , Ratones , Macrófagos/metabolismo , Artritis Experimental/metabolismo , Ratones Noqueados , Masculino
4.
Hypertension ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686582

RESUMEN

Cytokines play a crucial role in the structure and function of blood vessels in hypertension. Hypertension damages blood vessels by mechanisms linked to shear forces, activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, oxidative stress, and a proinflammatory milieu that lead to the generation of neoantigens and damage-associated molecular patterns, ultimately triggering the release of numerous cytokines. Damage-associated molecular patterns are recognized by PRRs (pattern recognition receptors) and activate inflammatory mechanisms in endothelial cells, smooth muscle cells, perivascular nerves, and perivascular adipose tissue. Activated vascular cells also release cytokines and express factors that attract macrophages, dendritic cells, and lymphocytes to the blood vessels. Activated and differentiated T cells into Th1, Th17, and Th22 in secondary lymphoid organs migrate to the vessels, releasing specific cytokines that further contribute to vascular dysfunction and remodeling. This chronic inflammation alters the profile of endothelial and smooth muscle cells, making them dysfunctional. Here, we provide an overview of how cytokines contribute to hypertension by impacting the vasculature. Furthermore, we explore clinical perspectives about the modulation of cytokines as a potential therapeutic intervention to specifically target hypertension-linked vascular dysfunction.

5.
Life Sci ; 338: 122361, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38158040

RESUMEN

AIMS: Overproduction of reactive oxygen species (ROS) is a pathologic hallmark of cyclophosphamide toxicity. For this reason, antioxidant compounds emerge as promising tools for preventing tissue damage induced by cyclophosphamide. We hypothesized that melatonin would display cytoprotective action in the vasculature by preventing cyclophosphamide-induced oxidative stress. MATERIALS AND METHODS: Male C57BL/6 mice (22-25 g) were injected with a single dose of cyclophosphamide (300 mg/kg; i.p.). Mice were pretreated or not with melatonin (10 mg/kg/day, i.p.), given during 4 days before cyclophosphamide injection. Functional (vascular reactivity) and oxidative/inflammatory patterns were evaluated at 24 h in resistance arteries. The antioxidant action of melatonin was assessed in vitro in cultured vascular smooth muscle cells (VSMCs) of mesenteric arteries. KEY FINDINGS: Cyclophosphamide induced ROS generation in both mesenteric arterial bed (MAB) and cultured VSMCs, and this was normalized by melatonin. Cyclophosphamide-induced ROS generation and lipoperoxidation in the bladder and kidney was also prevented by melatonin. Increased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 were detected in the MAB of cyclophosphamide-treated mice, all of which were prevented by melatonin. Functional assays using second-order mesenteric arteries of cyclophosphamide-treated mice revealed a decrease in vascular contractility. Melatonin prevented vascular hypocontractility in the cyclophosphamide group. Melatonin partially prevented the decrease in myeloperoxidase (MPO) and N-acetyl-beta-D-glucosaminidase (NAG) activities in the MAB of the cyclophosphamide group. SIGNIFICANCE: Melatonin may constitute a novel and promising therapeutic approach for management of the toxic effects induced by cyclophosphamide in the vasculature.


Asunto(s)
Melatonina , Ratones , Masculino , Animales , Especies Reactivas de Oxígeno/farmacología , Melatonina/uso terapéutico , Antioxidantes/metabolismo , Ratones Endogámicos C57BL , Ciclofosfamida/toxicidad , Estrés Oxidativo , Arterias Mesentéricas/metabolismo
6.
Biochem Pharmacol ; 220: 115982, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38097051

RESUMEN

Hyperglycemia is a major risk factor for kidney diseases. Oxidative stress, caused by reactive oxygen species, is a key factor in the development of kidney abnormalities related to hyperglycemia. The nuclear factor erythroid 2-related factor-2 (Nrf2) plays a crucial role in defending cells against oxidative stress by activating genes that produce antioxidants. L-sulforaphane (SFN), a drug that activates Nrf2, reduces damage caused by hyperglycemia. Hyperglycemic Wistar rats and HEK 293 cells maintained in hyperglycemic medium exhibited decreased Nrf2 nuclear translocation and reduced expression and activity of antioxidant enzymes. SFN treatment increased Nrf2 activity and reversed decreased renal function, oxidative stress and cell death associated with hyperglycemia. To investigate mechanisms involved in hyperglycemia-induced reduced Nrf2 activity, we addressed whether Nrf2 is modified by O-linked ß-N-acetylglucosamine (O-GlcNAc), a post-translational modification that is fueled in hyperglycemic conditions. In vivo, hyperglycemia increased O-GlcNAc-modified Nrf2 expression. Increased O-GlcNAc levels, induced by pharmacological inhibition of OGA, decreased Nrf2 activity in HEK 293 cells. In conclusion, hyperglycemia reduces Nrf2 activity, promoting oxidative stress, cell apoptosis and structural and functional renal damage. Pharmacological treatment with SFN attenuates renal injury. O-GlcNAcylation negatively modulates Nrf2 activity and represents a potential mechanism leading to oxidative stress and renal damage in hyperglycemic conditions.


Asunto(s)
Hiperglucemia , Enfermedades Renales , Animales , Humanos , Ratas , Antioxidantes/metabolismo , Apoptosis , Células HEK293 , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Riñón/metabolismo , Enfermedades Renales/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ratas Wistar , Sulfóxidos
7.
iScience ; 26(12): 108366, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38047070

RESUMEN

Airway epithelial cells (AEC) infected with SARS-CoV-2 may drive the dysfunction of macrophages during COVID-19. We hypothesized that the direct interaction of AEC with macrophages mediated by CD95/CD95L or indirect interaction mediated by IL-6 signaling are key steps for the COVID-19 severe acute inflammation. The interaction of macrophages with apoptotic and infected AEC increased CD95 and CD163 expression, and induced macrophage death. Macrophages exposed to tracheal aspirate with high IL-6 levels from intubated patients with COVID-19 or to recombinant human IL-6 exhibited decreased HLA-DR expression, increased CD95 and CD163 expression and IL-1ß production. IL-6 effects on macrophages were prevented by both CD95/CD95L antagonist and by IL-6 receptor antagonist and IL-6 or CD95 deficient mice showed significant reduction of acute pulmonary inflammation post-infection. Our findings show a non-canonical CD95L-CD95 pathway that simultaneously drives both macrophage activation and dysfunction and point to CD95/CD95L axis as therapeutic target.

8.
Clin Sci (Lond) ; 137(22): 1683-1697, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37986614

RESUMEN

O-Linked attachment of ß-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues of nuclear, cytoplasmic, and mitochondrial proteins is a highly dynamic and ubiquitous post-translational modification that impacts the function, activity, subcellular localization, and stability of target proteins. Physiologically, acute O-GlcNAcylation serves primarily to modulate cellular signaling and transcription regulatory pathways in response to nutrients and stress. To date, thousands of proteins have been revealed to be O-GlcNAcylated and this number continues to grow as the technology for the detection of O-GlcNAc improves. The attachment of a single O-GlcNAc is catalyzed by the enzyme O-GlcNAc transferase (OGT), and their removal is catalyzed by O-GlcNAcase (OGA). O-GlcNAcylation is regulated by the metabolism of glucose via the hexosamine biosynthesis pathway, and the metabolic abnormalities associated with pathophysiological conditions are all associated with increased flux through this pathway and elevate O-GlcNAc levels. While chronic O-GlcNAcylation is well associated with cardiovascular dysfunction, only until recently, and with genetically modified animals, has O-GlcNAcylation as a contributing mechanism of cardiovascular disease emerged. This review will address and critically evaluate the current literature on the role of O-GlcNAcylation in vascular physiology, with a view that this pathway can offer novel targets for the treatment and prevention of cardiovascular diseases.


Asunto(s)
Acetilglucosaminidasa , Procesamiento Proteico-Postraduccional , Animales , Fosforilación , Nutrientes , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo
9.
iScience ; 26(9): 107542, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37636076

RESUMEN

Intracellular peptides (InPeps) generated by the orchestrated action of the proteasome and intracellular peptidases have biological and pharmacological significance. Here, human plasma relative concentration of specific InPeps was compared between 175 patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and 45 SARS-CoV-2 non-infected patients; 2,466 unique peptides were identified, of which 67% were InPeps. The results revealed differences of a specific group of peptides in human plasma comparing non-infected individuals to patients infected by SARS-CoV-2, following the results of the semi-quantitative analyses by isotope-labeled electrospray mass spectrometry. The protein-protein interactions networks enriched pathways, drawn by genes encoding the proteins from which the peptides originated, revealed the presence of the coronavirus disease/COVID-19 network solely in the group of patients fatally infected by SARS-CoV-2. Thus, modulation of the relative plasma levels of specific InPeps could be employed as a predictive tool for disease outcome.

10.
Vascul Pharmacol ; 152: 107211, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37607602

RESUMEN

INTRODUCTION: Increased matrix metalloproteinase (MMP)-2 activity contributes to increase vascular smooth muscle cell (VSMC) proliferation in the aorta in early hypertension by cleaving many proteins of the extracellular matrix. Cleaved products from type I collagen may activate focal adhesion kinases (FAK) that trigger migration and proliferation signals in VSMC. We therefore hypothesized that increased activity of MMP-2 proteolyzes type I collagen in aortas of hypertensive rats, and thereby, induces FAK activation, thus leading to increased VSMC proliferation and hypertrophic remodeling in early hypertension. METHODS: Male Sprague-Dawley rats were submitted to renovascular hypertension by the two kidney-one clip (2K1C) model and treated with doxycycline (30 mg/kg/day) by gavage from the third to seventh-day post-surgery. Controls were submitted to sham surgery. Systolic blood pressure (SBP) was measured daily by tail-cuff plethysmography and the aortas were processed for zymography and Western blot for MMP-2, pFAK/FAK, integrins and type I collagen. Mass spectrometry, morphological analysis and Ki67 immunofluorescence were also done to identify collagen changes and VSMC proliferation. A7r5 cells were stimulated with collagen and treated with the MMP inhibitors (doxycycline or ARP-100), and with the FAK inhibitor PND1186 for 24 h. Cells were lysed and evaluated by Western blot for pFAK/FAK. RESULTS: 2K1C rats developed elevated SBP in the first week as well as increased expression and activity of MMP-2 in the aorta (p < 0.05 vs. Sham). Treatment with doxycycline reduced both MMP activity and type I collagen proteolysis in aortas of 2K1C rats (p < 0.05). Increased pFAK/FAK and increased VSMC proliferation (p < 0.05 vs. Sham groups) were also seen in the aortas of 2K1C and doxycycline decreased both parameters (p < 0.05). Higher proliferation of VSMC contributed to hypertrophic remodeling as seen by increased media/lumen ratio and cross sectional area (p < 0.05 vs Sham groups). In cell culture, MMP-2 cleaves collagen, an effect reversed by MMP inhibitors (p < 0.05). Increased levels of pFAK/FAK were observed when collagen was added in the culture medium (p < 0.05 vs control) and MMP and FAK inhibitors reduced this effect. CONCLUSIONS: Increase in MMP-2 activity proteolyzes type I collagen in the aortas of 2K1C rats and contributes to activate FAK and induces VSMC proliferation during the initial phase of hypertension.


Asunto(s)
Hipertensión , Metaloproteinasa 2 de la Matriz , Animales , Masculino , Ratas , Aorta , Proliferación Celular , Colágeno Tipo I , Doxiciclina/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Músculo Liso Vascular , Proteolisis , Ratas Sprague-Dawley
11.
Am J Physiol Heart Circ Physiol ; 325(2): H252-H263, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37327001

RESUMEN

The cytokine storm in SARS-CoV-2 infection contributes to the onset of inflammation and target-organ damage. The endothelium is a key player in COVID-19 pathophysiology and it is an important target for cytokines. Considering that cytokines trigger oxidative stress and negatively impact endothelial cell function, we sought to determine whether serum from individuals with severe COVID-19 decreases endothelial cells' main antioxidant defense, i.e., the antioxidant transcriptional factor Nrf2. Human umbilical vein endothelial cells (HUVECs) were incubated with serum from patients with severe COVID-19 at different time points and the effects on redox balance and Nrf2 activity were determined. Serum from individuals with COVID-19 increased oxidant species, as indicated by higher DHE (dihydroethydine) oxidation, increased protein carbonylation, and induced mitochondrial reactive oxygen species (ROS) generation and dysfunction. Serum from patients with COVID-19, but not serum from healthy individuals, induced cell death and diminished nitric oxide (NO) bioavailability. In parallel, Nrf2 nuclear accumulation and the expression of Nrf2-targeted genes were decreased in endothelial cells exposed to serum from individuals with COVID-19. In addition, these cells exhibited higher expression of Bach-1, a negative regulator of Nrf2 that competes for DNA binding. All events were prevented by tocilizumab, an IL-6 receptor blocker, indicating that IL-6 is key to the impairment of endothelial antioxidant defense. In conclusion, endothelial dysfunction related to SARS-CoV-2 infection is linked to decreased endothelial antioxidant defense via IL-6-dependent mechanisms. Pharmacological activation of Nrf2 may decrease endothelial cell damage in individuals with severe COVID-19.NEW & NOTEWORTHY We demonstrate that endothelial cell dysfunction in SARS-CoV-2-infected individuals is linked to decreased activity of the major antioxidant system regulator, the Nrf2 transcription factor. We provide evidence that this phenomenon relies on IL-6, an important cytokine involved in the pathophysiology of COVID-19. Our data support the view that Nrf2 activation is a potential therapeutical strategy to prevent oxidative stress and vascular inflammation in severe cases of COVID-19.


Asunto(s)
Antioxidantes , COVID-19 , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Regulación hacia Abajo , Síndrome de Liberación de Citoquinas , Interleucina-6/metabolismo , Células Cultivadas , SARS-CoV-2/metabolismo , Estrés Oxidativo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Citocinas/metabolismo
12.
Am J Physiol Heart Circ Physiol ; 325(1): H30-H53, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37145958

RESUMEN

The growing number of people who identify themselves as transgender has gained increased attention in recent years and will certainly impact personalized clinical practices and healthcare worldwide. Transgender and gender-nonconforming individuals frequently undergo gender-affirming hormone therapy (GAHT), i.e., they use sex hormones to align their gender identity with their biological characteristics. Testosterone is the main compound used in GAHT by transmasculine people, leading to the development of male secondary sexual characteristics in these individuals. However, sex hormones, testosterone included, also influence hemodynamic homeostasis, blood pressure, and cardiovascular performance by direct effects in the heart and blood vessels, and by modulating several mechanisms that control cardiovascular function. In pathological conditions and when used in supraphysiological concentrations, testosterone is associated with harmful cardiovascular effects, requiring close attention in its clinical use. The present review summarizes current knowledge on the cardiovascular impact of testosterone in biological females, focusing on aspects of testosterone use by transmasculine people (clinical goals, pharmaceutical formulations, and impact on the cardiovascular system). Potential mechanisms whereby testosterone may increase cardiovascular risk in these individuals are discussed, and the influence of testosterone on the main mechanisms that control blood pressure and that potentially lead to hypertension development and target-organ damage are also reviewed. In addition, current experimental models, which are key to reveal testosterone mechanistic aspects and potential markers of cardiovascular injury, are reviewed. Finally, research limitations and the lack of data on cardiovascular health of transmasculine individuals are considered, and future directions for more appropriate clinical practices are highlighted.


Asunto(s)
Sistema Cardiovascular , Personas Transgénero , Humanos , Masculino , Femenino , Testosterona/efectos adversos , Identidad de Género , Hormonas Esteroides Gonadales
13.
Am J Hypertens ; 36(9): 471-480, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37148218

RESUMEN

Cytomegalovirus (CMV) is a member of the ß-herpesviruses and is ubiquitous, infecting 50%-99% of the human population depending on ethnic and socioeconomic conditions. CMV establishes lifelong, latent infections in their host. Spontaneous reactivation of CMV is usually asymptomatic, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with several cardiovascular and post-transplant diseases (stroke, atherosclerosis, post-transplant vasculopathy, and hypertension). Herpesviruses, including CMV, encode viral G-protein-coupled receptors (vGPCRs) that alter the host cell by hijacking signaling pathways that play important roles in the viral life cycle and these cardiovascular diseases. In this brief review, we discuss the pharmacology and signaling properties of these vGPCRs, and their contribution to hypertension. Overall, these vGPCRs can be considered attractive targets moving forward in the development of novel hypertensive therapies.


Asunto(s)
Enfermedades Cardiovasculares , Infecciones por Citomegalovirus , Hipertensión , Humanos , Citomegalovirus/metabolismo , Transducción de Señal , Infecciones por Citomegalovirus/epidemiología , Receptores Acoplados a Proteínas G/metabolismo
14.
Curr Top Membr ; 91: 89-137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37080682

RESUMEN

The glycocalyx is a layer composed of carbohydrate side chains bound to core proteins that lines the vascular endothelium. The integrity of the glycocalyx is essential for endothelial cells' performance and vascular homeostasis. The neuroendocrine and immune systems influence the composition, maintenance, activity and degradation of the endothelial glycocalyx. The female organism has unique characteristics, and estrogen and progesterone, the main female hormones are essential to the development and physiology of the reproductive system and to the ability to develop a fetus. Female sex hormones also exert a wide variety of effects on other organs, including the vascular endothelium. They upregulate nitric oxide synthase expression and activity, decrease oxidative stress, increase vasodilation, and protect from vascular injury. This review will discuss how female hormones and pregnancy, which prompts to high levels of estrogen and progesterone, modulate the endothelial glycocalyx. Diseases prevalent in women that alter the glycocalyx, and therapeutic forms to prevent glycocalyx degradation and potential treatments that can reconstitute its structure and function will also be discussed.


Asunto(s)
Glicocálix , Progesterona , Embarazo , Humanos , Femenino , Progesterona/metabolismo , Progesterona/farmacología , Glicocálix/metabolismo , Células Endoteliales/metabolismo , Vasodilatación , Estrógenos/metabolismo , Estrógenos/farmacología
15.
Pharmacol Res ; 191: 106749, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37004830

RESUMEN

Left congenital diaphragmatic hernia (CDH) can lead to pulmonary arteries abnormalities in the contralateral and ipsilateral sides of the diaphragm. Nitric oxide (NO) is the main therapy used to attenuate the vascular effects of CDH, but it is not always effective. We hypothesized that the left and right pulmonary arteries do not respond similarly to NO donors during CDH. Therefore, vasorelaxant responses of the left and right pulmonary arteries to sodium nitroprusside (SNP, a NO donor) were determined in a rabbit experimental model of left CDH. CDH was surgically induced in the fetuses of rabbits on the 25th day of pregnancy. On the 30th day of pregnancy, a midline laparotomy was performed to access the fetuses. The fetuses' left and right pulmonary arteries were isolated and mounted in myograph chambers. Vasodilation was evaluated by cumulative concentration-effect curves to SNP. Protein expression of guanylate cyclase isoforms (GCα, GCß) and the α isoform of cGMP-dependent protein kinase 1 (PKG1α), and the concentration of NO and cGMP were determined in the pulmonary arteries. The left and right pulmonary arteries of newborns with CDH exhibited increased vasorelaxant responses to SNP (i.e. the potency of SNP was increased) compared to the control group. GCα, GCß, and PKG1α expression were decreased, while NO and cGMP concentrations were increased in the pulmonary arteries of newborns with CDH compared to the control group. The increased cGMP mobilization may be responsible for the increased vasorelaxant responses to the SNP in the pulmonary arteries during left CDH.


Asunto(s)
Hernias Diafragmáticas Congénitas , Animales , Embarazo , Femenino , Conejos , Hernias Diafragmáticas Congénitas/metabolismo , Arteria Pulmonar , Óxido Nítrico/metabolismo , Pulmón , Vasodilatadores/farmacología
16.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R435-R445, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36737252

RESUMEN

Coronavirus disease 2019 (COVID-19) infection has a negative impact on the cytokine profile of pregnant women. Increased levels of proinflammatory cytokines seem to be correlated with the severity of the disease, in addition to predisposing to miscarriage or premature birth. Proinflammatory cytokines increase the generation of reactive oxygen species (ROS). It is unclear how interleukin-6 (IL-6) found in the circulation of patients with severe COVID-19 might affect gestational health, particularly concerning umbilical cord function. This study tested the hypothesis that IL-6 present in the circulation of women with severe COVID-19 causes umbilical cord artery dysfunction by increasing ROS generation and activating redox-sensitive proteins. Umbilical cord arteries were incubated with serum from healthy women and women with severe COVID-19. Vascular function was assessed using concentration-effect curves to serotonin in the presence or absence of pharmacological agents, such as tocilizumab (antibody against the IL-6 receptor), tiron (ROS scavenger), ML171 (Nox1 inhibitor), and Y27632 (Rho kinase inhibitor). ROS generation was assessed by the dihydroethidine probe and Rho kinase activity by an enzymatic assay. Umbilical arteries exposed to serum from women with severe COVID-19 were hyperreactive to serotonin. This effect was abolished in the presence of tocilizumab, tiron, ML171, and Y27632. In addition, serum from women with severe COVID-19 increased Nox1-dependent ROS generation and Rho kinase activity. Increased Rho kinase activity was abolished by tocilizumab and tiron. Serum cytokines in women with severe COVID-19 promote umbilical artery dysfunction. IL-6 is key to Nox-linked vascular oxidative stress and activation of the Rho kinase pathway.


Asunto(s)
COVID-19 , Interleucina-6 , Femenino , Humanos , Embarazo , Sal Disódica del Ácido 1,2-Dihidroxibenceno-3,5-Disulfónico , Arterias/metabolismo , Citocinas , Especies Reactivas de Oxígeno/metabolismo , Quinasas Asociadas a rho , Serotonina , Cordón Umbilical
17.
Life Sci ; 319: 121526, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36828130

RESUMEN

Perivascular adipose tissue (PVAT) exerts anticontractile effect, but under non-physiological conditions it may contribute to vascular dysfunction by releasing pro-inflammatory cytokines. Since PVAT is an important source of interleukin (IL)-6, we evaluated whether this cytokine would contribute to ethanol-induced vascular dysfunction. With this purpose, male C57BL/6 wild-type (WT) or IL-6-deficient mice (IL-6-/-) were treated with ethanol for 12 weeks. Increased blood pressure was evidenced after 4 and 6 weeks of treatment with ethanol in WT and IL-6-/- mice, respectively. In WT mice, ethanol increased plasma and PVAT levels of IL-6. Ethanol favoured pro-contractile phenotype of PVAT in mesenteric arteries from WT, but not IL-6-deficient mice. Functional studies showed that tiron [(a scavenger of superoxide (O2-)] reversed the pro-contractile effect of PVAT in mesenteric arteries from ethanol-treated mice. Ethanol increased the levels of O2- in PVAT from WT mice. Ethanol-induced increase in O2- generation was higher in arteries with PVAT from WT mice when compared to IL-6-deficient mice. Treatment with ethanol augmented myeloperoxidase activity in the mesenteric arterial bed (MAB; with or without PVAT) from WT, but not IL-6-deficient mice. In conclusion, IL-6 contributes to the pro-contractile effect of PVAT by a mechanism that involves increase in ROS generation. Additionally, IL-6 mediates intravascular recruitment of neutrophils in response to ethanol and plays a role in the early stages of ethanol-induced hypertension. Collectively, our findings provide novel evidence for a role of IL-6 in the vascular dysfunction induced by ethanol.


Asunto(s)
Interleucina-6 , Obesidad , Masculino , Ratones , Animales , Interleucina-6/farmacología , Ratones Endogámicos C57BL , Arterias Mesentéricas , Fenotipo , Etanol/toxicidad , Tejido Adiposo
18.
Am J Physiol Heart Circ Physiol ; 324(4): H417-H429, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36705993

RESUMEN

α-Adrenergic receptors are crucial regulators of vascular hemodynamics and essential pharmacological targets for cardiovascular diseases. With aging, there is an increase in sympathetic activation, which could contribute to the progression of aging-associated cardiovascular dysfunction, including stroke. Nevertheless, there is little information directly associating adrenergic receptor dysfunction in the blood vessels of aged females. This study determined the role of a-adrenergic receptors in carotid dysfunction of senescent female mice (accelerated-senescence prone, SAMP8), compared with a nonsenescent (accelerated-senescence prone, SAMR1). Vasoconstriction to phenylephrine (Phe) was markedly increased in common carotid artery of SAMP8 [area under the curve (AUC), 527 ± 53] compared with SAMR1 (AUC, 334 ± 30, P = 0.006). There were no changes in vascular responses to the vasoconstrictor agent U46619 or the vasodilators acetylcholine (ACh) and sodium nitroprusside (NPS). Hyperactivity to Phe in female SAMP8 was reduced by cyclooxygenase-1 and cyclooxygenase-2 inhibition and associated with augmented ratio of TXA2/PGI2 release (SAMR1, 1.1 ± 0.1 vs. SAMP8, 2.1 ± 0.3, P = 0.007). However, no changes in cyclooxygenase expression were seen in SAMP8 carotids. Selective α1A-receptor antagonism markedly reduced maximal contraction, whereas α1D antagonism induced a minor shift in Phe contraction in SAMP8 carotids. Ligand binding analysis revealed a threefold increase of α-adrenergic receptor density in smooth muscle cells (VSMCs) of SAMP8 vs. SAMR1. Phe rapidly increased intracellular calcium (Cai2+) in VSMCs via the α1A-receptor, with a higher peak in VSMCs from SAMP8. In conclusion, senescence intensifies vasoconstriction mediated by α1A-adrenergic signaling in the carotid of female mice by mechanisms involving increased Cai2+ and release of cyclooxygenase-derived prostanoids.NEW & NOTEWORTHY The present study provides evidence that senescence induces hyperreactivity of α1-adrenoceptor-mediated contraction of the common carotid. Impairment of α1-adrenoceptor responses is linked to increased Ca2+ influx and release of COX-derived vasoconstrictor prostanoids, contributing to carotid dysfunction in the murine model of female senescence (SAMP8). Increased reactivity of the common carotid artery during senescence may lead to morphological and functional changes in arteries of the cerebral microcirculation and contribute to cognitive decline in females. Because the elderly population is growing, elucidating the mechanisms of aging- and sex-associated vascular dysfunction is critical to better direct pharmacological and lifestyle interventions to prevent cardiovascular risk in both sexes.


Asunto(s)
Prostaglandinas , Vasoconstrictores , Anciano , Humanos , Masculino , Ratones , Femenino , Animales , Vasoconstrictores/farmacología , Ciclooxigenasa 1 , Prostaglandinas/metabolismo , Envejecimiento/metabolismo , Fenilefrina/farmacología , Ciclooxigenasa 2
19.
J Cell Mol Med ; 27(1): 1-14, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515571

RESUMEN

In the present study, we hypothesized that endothelin (ET) receptors (ETA and ETB ) stimulation, through increased calcium and ROS formation, leads to Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3 (NLRP3) activation. Intracavernosal pressure (ICP/MAP) was measured in C57BL/6 (WT) mice. Functional and immunoblotting assays were performed in corpora cavernosa (CC) strips from WT, NLRP3-/- and caspase-/- mice in the presence of ET-1 (100 nM) and vehicle, MCC950, tiron, BAPTA AM, BQ123, or BQ788. ET-1 reduced the ICP/MAP in WT mice, and MCC950 prevented the ET-1 effect. ET-1 decreased CC ACh-, sodium nitroprusside (SNP)-induced relaxation, and increased caspase-1 expression. BQ123 an ETA receptor antagonist reversed the effect. The ETB receptor antagonist BQ788 also reversed ET-1 inhibition of ACh and SNP relaxation. Additionally, tiron, BAPTA AM, and NLRP3 genetic deletion prevented the ET-1-induced loss of ACh and SNP relaxation. Moreover, BQ123 diminished CC caspase-1 expression, while BQ788 increased caspase-1 and IL-1ß levels in a concentration-dependent manner (100 nM-10 µM). Furthermore, tiron and BAPTA AM prevented ET-1-induced increase in caspase-1. In addition, BAPTA AM blocked ET-1-induced ROS generation. In conclusion, ET-1-induced erectile dysfunction depends on ETA - and ETB -mediated activation of NLRP3 in mouse CC via Ca2+ -dependent ROS generation.


Asunto(s)
Endotelina-1 , Disfunción Eréctil , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Masculino , Ratones , Sal Disódica del Ácido 1,2-Dihidroxibenceno-3,5-Disulfónico , Antagonistas de los Receptores de Endotelina , Endotelina-1/metabolismo , Disfunción Eréctil/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno , Receptores de Endotelina
20.
Exp Gerontol ; 167: 111895, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35843349

RESUMEN

Oxidative stress with higher levels of leptin and inflammatory response are key processes related to pathogenesis of both T. cruzi infection and aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the expression of several genes implicated in the oxidative stress response in many pathological conditions. Melatonin is a pleiotropic hormone with, antioxidant, anti-inflammatory and anti-aging actions. Then, we hypothesized that Nrf2 response is impaired during the acute T. cruzi (9 days) infection and that melatonin rescues Nrf2 responses. Young (5 weeks-old) and middle-aged (18 months-old) male Wistar rats were infected with T. cruzi. Nrf2 translocation and markers of inflammation and oxidative stress were analyzed in blood and spleen. Increased apoptosis levels and oxidative stress indicators were observed in the rat spleen during T. cruzi infection. These responses were accompanied by decreased Nrf2 expression and increased expression of nuclear factor kappa B (NFκB). Melatonin (5 mg/kg/day; p.o. gavage) attenuated the superoxide anion (O2-) and hydrogen peroxide (H2O2) production induced by T. cruzi infection. Increased expressions of catalase and superoxide dismutase (SOD) were detected in the spleen of melatonin-treated rats infected with T. cruzi. Melatonin treatment inhibited the spleen NF-κB activation and downregulates the levels of circulating interleukin (IL)-4, IL-10 and tumor necrosis factor (TNF)-α in T. cruzi middle-aged infected rats. Increased levels of the chemokine CXCL1 in middle-aged control rats was observed, confirming that aging alters the production of this chemokine. In T. cruzi infected young animals, CXCL1 was up-regulated when compared to non-infected young ones. For young or middle-aged animals, melatonin treatment had no significant effect on CXCL1 levels. Our findings demonstrate an important role for Nrf2/NF-kB regulation as a possible mechanism by which melatonin attenuates oxidative stress, and provide new insights for further studies of this indoleamine as a therapeutic co-adjuvant agent against T. cruzi infection.


Asunto(s)
Enfermedad de Chagas , Melatonina , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Masculino , Melatonina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...