Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Microbiology (Reading) ; 168(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35917166

RESUMEN

Pectobacterium atrosepticum is part of a larger family of soft rot bacteria (Pectobacteriaceae) that cause disease on a wide range of crops worldwide. They are closely related to members of the Enterobacteriaceae and, as the plant pathogens and plant associated members of the group, form part of a continuum towards opportunistic and more devastating animal and human pathogens. Many of the horizontally acquired islands present in the genome of P. atrosepticum are directly responsible for life on plants. These include genes for a plethora of plant cell wall degrading enzymes, plant toxins, siderophores etc., which are exported by multiple secretion systems under a highly coordinated regulation system.


Asunto(s)
Pectobacterium , Solanum tuberosum , Enterobacteriaceae , Humanos , Pectobacterium/genética , Enfermedades de las Plantas/microbiología , Plantas , Solanum tuberosum/microbiología
2.
Sci Rep ; 10(1): 7747, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385404

RESUMEN

Expansins are encoded by some phytopathogenic bacteria and evidence indicates that they act as virulence factors for host infection. Here we analysed the expression of exl1 by Pectobacterium brasiliense and Pectobacterium atrosepticum. In both, exl1 gene appears to be under quorum sensing control, and protein Exl1 can be observed in culture medium and during plant infection. Expression of exl1 correlates with pathogen virulence, where symptoms are reduced in a Δexl1 mutant strain of P. atrosepticum. As well as Δexl1 exhibiting less maceration of potato plants, fewer bacteria are observed at distance from the inoculation site. However, bacteria infiltrated into the plant tissue are as virulent as the wild type, suggesting that this is due to alterations in the initial invasion of the tissue. Additionally, swarming from colonies grown on MacConkey soft agar was delayed in the mutant in comparison to the wild type. We found that Exl1 acts on the plant tissue, probably by remodelling of a cell wall component or altering the barrier properties of the cell wall inducing a plant defence response, which results in the production of ROS and the induction of marker genes of the JA, ET and SA signalling pathways in Arabidopsis thaliana. Exl1 inactive mutants fail to trigger such responses. This defence response is protective against Pectobacterium brasiliense and Botrytis cinerea in more than one plant species.


Asunto(s)
Arabidopsis/citología , Pectobacterium/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Virulencia/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Oxilipinas/metabolismo , Pectobacterium/citología , Pectobacterium/genética , Pectobacterium/fisiología , Percepción de Quorum , Ácido Salicílico/metabolismo , Virulencia , Factores de Virulencia/genética
3.
Sci Rep ; 9(1): 4525, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872786

RESUMEN

Plant cell wall degrading enzymes (PCWDEs) are the primary virulence determinants of soft rotting bacteria such as the potato pathogen, Pectobacterium atrosepticum. The regulation of secondary metabolite (Rsm) system controls production of PCWDEs in response to changing nutrient conditions. This work identified a new suppressor of an rsmB mutation - ECA1172 or rsmS (rsmB suppressor). Mutants defective in rsmB (encoding a small regulatory RNA), show reduced elaboration of the quorum sensing molecule (N-3-oxohexanoyl-homoserine lactone; OHHL) and PCWDEs. However, OHHL and PCWDE production were partially restored in an rsmB, rsmS double mutant. Single rsmS mutants, overproduced PCWDEs and OHHL relative to wild type P. atrosepticum and exhibited hypervirulence in potato. RsmS overproduction also resulted in increased PCWDEs and OHHL. Homology searches revealed rsmS conservation across pathogens such as Escherichia coli (ybaM), Dickeya solani, Klebsiella pneumoniae and Shigella flexneri. An rsmS mutant of Pectobacterium carotovorum ATCC39048 showed bypass of rsmB-dependent repression of PCWDEs and OHHL production. P. carotovorum ATCC39048 produces the ß-lactam antibiotic, 1-carbapen-2-em-3-carboxylic acid (a carbapenem). Production of the antibiotic was repressed in an rsmB mutant but partially restored in an rsmB, rsmS double mutant. This work highlights the importance of RsmS, as a conserved pleiotropic regulator of virulence and antibiotic biosynthesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pectobacterium/patogenicidad , Virulencia/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Carbapenémicos/metabolismo , Regulación Bacteriana de la Expresión Génica , Mutación , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Alineación de Secuencia , Solanum tuberosum/microbiología
4.
PLoS One ; 13(10): e0205711, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30312341

RESUMEN

Potato blackleg and soft rot caused by Pectobacterium and Dickeya species are among the most significant bacterial diseases affecting potato production globally. In this study we estimate the impact of future temperatures on establishment of non-indigenous but confirmed Pectobacterium and Dickeya species in Great Britain (GB). The calculations are based on probabilistic climate change data and a model fitted to disease severity data from a controlled environment tuber assay with the dominant potato blackleg and soft rot-causing species in GB (P. atrosepticum), and three of the main causative agents in Europe (P. carotovorum subsp. brasiliense, P. parmentieri, Dickeya solani). Our aim was to investigate if the European strains could become stronger competitors in the GB potato ecosystem as the climate warms, on the basis of their aggressiveness in tubers at different temperatures. Principally, we found that the tissue macerating capacity of all four pathogens will increase in GB under all emissions scenarios. The predominant Pectobacterium and Dickeya species in Europe are able to cause disease in tubers under field conditions currently seen in GB but are not expected to become widely established in the future, at least on the basis of their aggressiveness in tubers relative to P. atrosepticum under GB conditions. Our key take-home messages are that the GB potato industry is well positioned to continue to thrive via current best management practices and continued reinforcement of existing legislation.


Asunto(s)
Cambio Climático , Enterobacteriaceae , Pectobacterium , Enfermedades de las Plantas/microbiología , Tubérculos de la Planta/microbiología , Solanum tuberosum/microbiología , Enterobacteriaceae/crecimiento & desarrollo , Pectobacterium/crecimiento & desarrollo , Enfermedades de las Plantas/etiología , Temperatura , Reino Unido
5.
Environ Microbiol ; 17(11): 4730-44, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26271942

RESUMEN

Integrative and conjugative elements (ICEs) contribute to the rapid evolution of bacterial pathogens via horizontal gene transfer of virulence determinants. ICEs have common mechanisms for transmission, yet the cues triggering this process under natural environmental or physiological conditions are largely unknown. In this study, mobilization of the putative ICE horizontally acquired island 2 (HAI2), present in the chromosome of the phytopathogen Pectobacterium atrosepticum SCRI1043, was examined during infection of the host plant potato. Under these conditions, mobilization of HAI2 increased markedly compared with in vitro cultures. In planta-induced mobilization of HAI2 was regulated by quorum sensing and involved the putative ICE-encoded relaxase ECA0613. Disruption of ECA0613 also reduced transcription of genes involved in production of coronafacic acid (Cfa), the major virulence factor harboured on HAI2, whereas their expression was unaffected in the quorum-sensing (expI) mutant. Thus, suppression of cfa gene expression was not regulated by the mobilization of the ICE per se, but was due directly to inactivation of the relaxase. The identification of genetic factors associated solely with in planta mobilization of an ICE demonstrates that this process is highly adapted to the natural environment of the bacterial host and can influence the expression of virulence determinants.


Asunto(s)
Pectobacterium/genética , Pectobacterium/patogenicidad , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Factores de Virulencia/genética , Secuencia de Aminoácidos , Transferencia de Gen Horizontal , Indenos/metabolismo , Islas , Datos de Secuencia Molecular , Pectobacterium/metabolismo , Percepción de Quorum/genética , Alineación de Secuencia , Factores de Virulencia/metabolismo
6.
Methods Mol Biol ; 1302: 1-16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25981242

RESUMEN

Blackleg and soft rot of potato, caused by Pectobacterium and Dickeya spp., are major production constraints in many potato-growing regions of the world. Despite advances in our understanding of the causative organisms, disease epidemiology, and control, blackleg remains the principal cause of down-grading and rejection of potato seed in classification schemes across Northern Europe and many other parts of the world. Although symptom recognition is relatively straightforward and is applied universally in seed classification schemes, attributing disease to a specific organism is problematic and can only be achieved through the use of diagnostics. Similarly as disease spread is largely through the movement of asymptomatically infected seed tubers and, possibly in the case of Dickeya spp., irrigation waters, accurate and sensitive diagnostics are a prerequisite for detection. This chapter describes the diagnostic pathway that can be applied to identify the principal potato pathogens within the genera Pectobacterium and Dickeya.


Asunto(s)
ADN Bacteriano/análisis , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Pectobacterium/genética , Pectobacterium/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Solanum tuberosum/microbiología , ADN Bacteriano/genética , Enterobacteriaceae/patogenicidad , Pectobacterium/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Tubérculos de la Planta/química , Tubérculos de la Planta/microbiología , Especificidad de la Especie
7.
Mol Plant Microbe Interact ; 28(4): 420-31, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25411959

RESUMEN

Type VI secretion systems (T6SSs) are a class of macromolecular machines that are recognized as an important virulence mechanism in several gram-negative bacteria. The genome of Pantoea ananatis LMG 2665(T), a pathogen of pineapple fruit and onion plants, carries two gene clusters whose predicted products have homology with T6SS-associated gene products from other bacteria. Nothing is known regarding the role of these T6SS-1 and T6SS-3 gene clusters in the biology of P. ananatis. Here, we present evidence that T6SS-1 plays an important role in the pathogenicity of P. ananatis LMG 2665(T) in onion plants, while a strain lacking T6SS-3 remains as pathogenic as the wild-type strain. We also investigated the role of the T6SS-1 system in bacterial competition, the results of which indicated that several bacteria compete less efficiently against wild-type LMG 2665(T) than a strain lacking T6SS-1. Additionally, we demonstrated that these phenotypes of strain LMG 2665(T) were reliant on the core T6SS products TssA and TssD (Hcp), thus indicating that the T6SS-1 gene cluster encodes a functioning T6SS. Collectively, our data provide the first evidence demonstrating that the T6SS-1 system is a virulence determinant of P. ananatis LMG 2665(T) and plays a role in bacterial competition.


Asunto(s)
Sistemas de Secreción Bacterianos/genética , Interacciones Huésped-Patógeno/genética , Pantoea/genética , Pantoea/patogenicidad , Enfermedades de las Plantas/microbiología , Virulencia/genética , Sistemas de Secreción Bacterianos/fisiología , Técnicas de Inactivación de Genes , Genes Bacterianos , Interacciones Huésped-Patógeno/fisiología , Familia de Multigenes , Mutación , Cebollas/microbiología , Pantoea/fisiología , Virulencia/fisiología
8.
J Biol Chem ; 289(49): 34349-65, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25320086

RESUMEN

Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR-GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells.


Asunto(s)
Adhesinas Bacterianas/genética , Arabinosa/química , Pared Celular/química , Escherichia coli O157/genética , Fimbrias Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Polisacáridos/química , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Anticuerpos Monoclonales/química , Especificidad de Anticuerpos , Arabinosa/metabolismo , Adhesión Bacteriana , Pared Celular/metabolismo , Pared Celular/microbiología , Escherichia coli O157/química , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Células Vegetales/química , Células Vegetales/metabolismo , Células Vegetales/microbiología , Polisacáridos/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Spinacia oleracea/química , Spinacia oleracea/metabolismo , Spinacia oleracea/microbiología
9.
BMC Genomics ; 15: 404, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24884520

RESUMEN

BACKGROUND: Pantoea ananatis is found in a wide range of natural environments, including water, soil, as part of the epi- and endophytic flora of various plant hosts, and in the insect gut. Some strains have proven effective as biological control agents and plant-growth promoters, while other strains have been implicated in diseases of a broad range of plant hosts and humans. By analysing the pan-genome of eight sequenced P. ananatis strains isolated from different sources we identified factors potentially underlying its ability to colonize and interact with hosts in both the plant and animal Kingdoms. RESULTS: The pan-genome of the eight compared P. ananatis strains consisted of a core genome comprised of 3,876 protein coding sequences (CDSs) and a sizeable accessory genome consisting of 1,690 CDSs. We estimate that ~106 unique CDSs would be added to the pan-genome with each additional P. ananatis genome sequenced in the future. The accessory fraction is derived mainly from integrated prophages and codes mostly for proteins of unknown function. Comparison of the translated CDSs on the P. ananatis pan-genome with the proteins encoded on all sequenced bacterial genomes currently available revealed that P. ananatis carries a number of CDSs with orthologs restricted to bacteria associated with distinct hosts, namely plant-, animal- and insect-associated bacteria. These CDSs encode proteins with putative roles in transport and metabolism of carbohydrate and amino acid substrates, adherence to host tissues, protection against plant and animal defense mechanisms and the biosynthesis of potential pathogenicity determinants including insecticidal peptides, phytotoxins and type VI secretion system effectors. CONCLUSIONS: P. ananatis has an 'open' pan-genome typical of bacterial species that colonize several different environments. The pan-genome incorporates a large number of genes encoding proteins that may enable P. ananatis to colonize, persist in and potentially cause disease symptoms in a wide range of plant and animal hosts.


Asunto(s)
Infecciones por Enterobacteriaceae/veterinaria , Genoma Bacteriano , Pantoea/genética , Pantoea/fisiología , Enfermedades de las Plantas/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Interacción Gen-Ambiente , Humanos , Insectos/microbiología , Pantoea/clasificación , Filogenia , Plantas/microbiología , Vertebrados/microbiología
10.
Int J Syst Evol Microbiol ; 64(Pt 3): 768-774, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24225027

RESUMEN

Pectinolytic bacteria have been recently isolated from diseased potato plants exhibiting blackleg and slow wilt symptoms found in a number of European countries and Israel. These Gram-reaction-negative, motile, rods were identified as belonging to the genus Dickeya, previously the Pectobacterium chrysanthemi complex (Erwinia chrysanthemi), on the basis of production of a PCR product with the pelADE primers, 16S rRNA gene sequence analysis, fatty acid methyl esterase analysis, the production of phosphatases and the ability to produce indole and acids from α-methylglucoside. Differential physiological assays used previously to differentiate between strains of E. chrysanthemi, showed that these isolates belonged to biovar 3. Eight of the isolates, seven from potato and one from hyacinth, were analysed together with 21 reference strains representing all currently recognized taxa within the genus Dickeya. The novel isolates formed a distinct genetic clade in multilocus sequence analysis (MLSA) using concatenated sequences of the intergenic spacer (IGS), as well as dnaX, recA, dnaN, fusA, gapA, purA, rplB, rpoS and gyrA. Characterization by whole-cell MALDI-TOF mass spectrometry, pulsed field gel electrophoresis after digestion of whole-genome DNA with rare-cutting restriction enzymes, average nucleotide identity analysis and DNA-DNA hybridization studies, showed that although related to Dickeya dadantii, these isolates represent a novel species within the genus Dickeya, for which the name Dickeya solani sp. nov. (type strain IPO 2222(T) = LMG25993(T) = NCPPB4479(T)) is proposed.


Asunto(s)
Enterobacteriaceae/clasificación , Pectinas/metabolismo , Filogenia , Solanum tuberosum/microbiología , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Europa (Continente) , Ácidos Grasos/química , Genes Bacterianos , Indoles/metabolismo , Israel , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , Enfermedades de las Plantas/microbiología , ARN Ribosómico 16S/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
Environ Microbiol ; 16(7): 2181-95, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24148193

RESUMEN

Bacterial attachment to plant and animal surfaces is generally thought to constitute the initial step in colonization, requiring adherence factors such as flagella and fimbriae. We describe the molecular mechanism underpinning flagella-mediated adherence to plant tissue for the foodborne pathogen, enterohaemorrhagic Escherichia coli. Escherichia coli H7 flagella interacted with a sulphated carbohydrate (carrageenan) on a glycan array, which occurred in a dose-dependent manner. Adherence of E. coli O157 : H-expressing flagella of serotype H7, H6 or H48 to plants associated with outbreaks from fresh produce and to Arabidopsis thaliana, was dependent on flagella interactions with phospholipids and sulpholipids in plasma membranes. Adherence of purified H7 and H48 flagella to carrageenan was reduced at higher concentrations of KH2 PO4 or KCl, showing an ionic basis to the interactions. Purified H7 flagella were observed to physically interact with plasma membranes in spinach plants and in A.thaliana. The results show a specific interaction between E. coli H7, H6 and H48 flagella and ionic lipids in plant plasma membranes. The work extends our understanding of the molecular mechanisms underpinning E.coli flagella targeting of plant hosts and suggests a generic mechanism of recognition common in eukaryotic hosts belonging to different biological kingdoms.


Asunto(s)
Arabidopsis/microbiología , Membrana Celular/microbiología , Escherichia coli O157/metabolismo , Flagelos/metabolismo , Lípidos de la Membrana/metabolismo , Spinacia oleracea/microbiología , Arabidopsis/química , Adhesión Bacteriana , Carragenina/metabolismo , Membrana Celular/química , Recuento de Colonia Microbiana , Escherichia coli O157/química , Flagelos/química , Especificidad del Huésped , Interacciones Huésped-Patógeno , Lípidos de la Membrana/química , Concentración Osmolar , Spinacia oleracea/química
12.
Genome Announc ; 1(6)2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24265502

RESUMEN

Dickeya (formerly Erwinia chrysanthemi) species cause diseases on a wide range of crops and ornamental plants worldwide. Here we present the draft sequences of 17 Dickeya isolates spanning four Dickeya species, including five isolates that are currently unassigned to a species.

13.
Phytopathology ; 103(4): 333-40, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23506361

RESUMEN

The foodborne pathogen Escherichia coli O157:H7 is increasingly associated with fresh produce (fruit and vegetables). Bacterial colonization of fresh produce plants can occur to high levels on the external tissue but bacteria have also been detected within plant tissue. However, questions remain about the extent of internalization, its molecular basis, and internal location of the bacteria. We have determined the extent of internalization of E. coli O157:H7 in live spinach and lettuce plants and used high-resolution microscopy to examine colony formation in roots and pathways to internalization. E. coli O157:H7 was found within internal tissue of both produce species. Colonization occurred within the apoplast between plant cells. Furthermore, colonies were detected inside the cell wall of epidermal and cortical cells of spinach and Nicotiana benthamiana roots. Internal colonization of epidermal cells resembled that of the phytopathogen Pectobacterium atrosepticum on potato. In contrast, only sporadic cells of the laboratory strain of E. coli K-12 were found on spinach, with no internal bacteria evident. The data extend previous findings that internal colonization of plants appears to be limited to a specific group of plant-interacting bacteria, including E. coli O157:H7, and demonstrates its ability to invade the cells of living plants.


Asunto(s)
Escherichia coli O157/fisiología , Escherichia coli/fisiología , Lactuca/microbiología , Raíces de Plantas/microbiología , Spinacia oleracea/microbiología , Verduras/microbiología , Recuento de Colonia Microbiana , Endófitos , Escherichia coli/citología , Escherichia coli/crecimiento & desarrollo , Escherichia coli O157/citología , Escherichia coli O157/crecimiento & desarrollo , Contaminación de Alimentos , Microbiología de Alimentos , Interacciones Huésped-Patógeno , Humanos , Lactuca/citología , Microscopía Electrónica de Transmisión , Pectobacterium/citología , Pectobacterium/crecimiento & desarrollo , Pectobacterium/fisiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Rizosfera , Microbiología del Suelo , Solanum tuberosum/citología , Solanum tuberosum/microbiología , Spinacia oleracea/citología , Nicotiana/citología , Nicotiana/microbiología
14.
Mol Plant Microbe Interact ; 26(3): 356-66, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23113713

RESUMEN

Plant cell wall-degrading enzymes (PCWDE) are key virulence determinants in the pathogenesis of the potato pathogen Pectobacterium atrosepticum. In this study, we report the impact on virulence of a transposon insertion mutation in the metJ gene that codes for the repressor of the methionine biosynthesis regulon. In a mutant strain defective for the small regulatory RNA rsmB, PCWDE are not produced and virulence in potato tubers is almost totally abolished. However, when the metJ gene is disrupted in this background, the rsmB(-) phenotype is suppressed and virulence and PCWDE production are restored. Additionally, when metJ is disrupted, production of the quorum-sensing signal, N-(3-oxohexanoyl)-homoserine lactone, is increased. The metJ mutant strains showed pleiotropic transcriptional impacts affecting approximately a quarter of the genome. Genes involved in methionine biosynthesis were most highly upregulated but many virulence-associated transcripts were also upregulated. This is the first report of the impact of the MetJ repressor on virulence in bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Pectobacterium/genética , Percepción de Quorum/genética , Proteínas Represoras/genética , Solanum tuberosum/microbiología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Metionina/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , Motivos de Nucleótidos , Análisis de Secuencia por Matrices de Oligonucleótidos , Pectobacterium/enzimología , Pectobacterium/patogenicidad , Pectobacterium/fisiología , Péptido Hidrolasas/metabolismo , Fenotipo , Tubérculos de la Planta/microbiología , Polisacárido Liasas/metabolismo , Proteínas Represoras/metabolismo , Alineación de Secuencia , Transducción de Señal , Virulencia
15.
Adv Appl Microbiol ; 81: 89-132, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22958528

RESUMEN

Most reviews of climate change are epidemiological, focusing on impact assessment and risk mapping. However, there are many reports of the effects of environmental stress factors on defense mechanisms in plants against pathogens. We review those representative of key climate change-related stresses to determine whether there are any patterns or trends in adaptation responses. We recognize the complexity of climate change itself and the multitrophic nature of the complex biological interactions of plants, microbes, soil, and the environment and, therefore, the difficulty of reductionist dissection approaches to resolving the problems. We review host defense genes, germplasm, and environmental interactions in different types of organisms but find no significant group-specific trends. Similarly, we review by host defense mechanism type and by host-pathogen trophic relationship but identify no dominating mechanism for stress response. However, we do identify core stress response mechanisms playing key roles in multiple response pathways whether to biotic or abiotic stress. We suggest that these should be central to mechanistic climate change plant defense research. We also recognize biodiversity, heterogeneity, and the need for understanding stress in a true systems biology approach as being essential components of progressing our understanding of and response to climate change.


Asunto(s)
Cambio Climático , Plantas , Biodiversidad , Clima , Ecosistema , Plantas/metabolismo , Suelo
16.
PLoS One ; 7(4): e34498, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496820

RESUMEN

BACKGROUND: An Escherichia coli O104:H4 outbreak in Germany in summer 2011 caused 53 deaths, over 4000 individual infections across Europe, and considerable economic, social and political impact. This outbreak was the first in a position to exploit rapid, benchtop high-throughput sequencing (HTS) technologies and crowdsourced data analysis early in its investigation, establishing a new paradigm for rapid response to disease threats. We describe a novel strategy for design of diagnostic PCR primers that exploited this rapid draft bacterial genome sequencing to distinguish between E. coli O104:H4 outbreak isolates and other pathogenic E. coli isolates, including the historical hæmolytic uræmic syndrome (HUSEC) E. coli HUSEC041 O104:H4 strain, which possesses the same serotype as the outbreak isolates. METHODOLOGY/PRINCIPAL FINDINGS: Primers were designed using a novel alignment-free strategy against eleven draft whole genome assemblies of E. coli O104:H4 German outbreak isolates from the E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium website, and a negative sequence set containing 69 E. coli chromosome and plasmid sequences from public databases. Validation in vitro against 21 'positive' E. coli O104:H4 outbreak and 32 'negative' non-outbreak EHEC isolates indicated that individual primer sets exhibited 100% sensitivity for outbreak isolates, with false positive rates of between 9% and 22%. A minimal combination of two primers discriminated between outbreak and non-outbreak E. coli isolates with 100% sensitivity and 100% specificity. CONCLUSIONS/SIGNIFICANCE: Draft genomes of isolates of disease outbreak bacteria enable high throughput primer design and enhanced diagnostic performance in comparison to traditional molecular assays. Future outbreak investigations will be able to harness HTS rapidly to generate draft genome sequences and diagnostic primer sets, greatly facilitating epidemiology and clinical diagnostics. We expect that high throughput primer design strategies will enable faster, more precise responses to future disease outbreaks of bacterial origin, and help to mitigate their societal impact.


Asunto(s)
Cartilla de ADN/química , Brotes de Enfermedades , Infecciones por Escherichia coli/diagnóstico , Infecciones por Escherichia coli/epidemiología , Escherichia coli/aislamiento & purificación , Genoma Bacteriano , Virulencia/genética , Escherichia coli/clasificación , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Alemania/epidemiología , Humanos , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
17.
Mol Microbiol ; 84(4): 648-63, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22524709

RESUMEN

Topoisomerase III enzymes are present only in a limited set of bacteria and their physiological role remains unclear. Here, we show that PbTopo IIIß, a homologue of topoisomerase III encoded on the chromosome of Pectobacterium atrosepticum strain SCRI1043 (Pba SCRI1043), is involved in excision of HAI2, a discrete ~100 kb region, from the Pba SCRI1043 chromosome. HAI2 is a Pathogenicity Island (PAI) that encodes coronafacic acid (Cfa), a major virulence determinant required for infection of potato. PAIs are horizontally acquired genetic elements that in some instances are able to excise from the chromosome of their host cell to form a circular episome prior to transfer to a recipient bacterium. We demonstrate excision of HAI2 from the chromosome, a process that is independent of growth phase and that results in the production of a circular intermediate. Inactivation of PbTopo IIIß causes a 10(3) - to 10(4) -fold increase in excision, leading to reduced fitness in vitro and a decrease in the virulence of Pba SCRI1043 on potato. These results suggest that PbTopo IIIß is required for stable maintenance of HAI2 in the chromosome of Pba SCRI1043 and may control as yet unidentified genes involved in viability and virulence of Pba SCRI1043 on potato.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , ADN Bacteriano/genética , Islas Genómicas , Pectobacterium/enzimología , Pectobacterium/patogenicidad , Recombinación Genética , ADN-Topoisomerasas de Tipo I/genética , ADN Bacteriano/metabolismo , Pectobacterium/genética , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Virulencia
18.
Mol Plant Pathol ; 13(2): 160-73, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21831138

RESUMEN

The bacterial pathogen Erwinia amylovora is the causal agent of fire blight, an economically significant disease of apple and pear. Disease initiation by E. amylovora requires the translocation of effector proteins into host cells via the hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS). The alternative sigma factor HrpL positively regulates the transcription of structural and translocated components of the T3SS via hrp promoter elements. To characterize genome-wide HrpL-dependent gene expression in E. amylovora Ea1189, wild-type and Ea1189ΔhrpL strains were cultured in hrp-inducing minimal medium, and total RNA was compared using a custom microarray designed to represent the annotated genes of E. amylovora ATCC 49946. The results revealed 24 genes differentially regulated in Ea1189ΔhrpL relative to Ea1189 with fold-change expression ratios greater than 1.5; of these, 19 genes exhibited decreased transcript abundance and five genes showed increased transcript abundance relative to Ea1189. To expand our understanding of the HrpL regulon and to elucidate direct versus indirect HrpL-mediated effects on gene expression, the genome of E. amylovora ATCC 49946 was examined in silico using a hidden Markov model assembled from known Erwinia spp. hrp promoters. This technique identified 15 putative type III novel hrp promoters, seven of which were validated with quantitative polymerase chain reaction based on expression analyses. It was found that HrpL-regulated genes encode all known components of the hrp T3SS, as well as five putative type III effectors. Eight genes displayed apparent indirect HrpL regulation, suggesting that the HrpL regulon is connected to downstream signalling networks. The construction of deletion mutants of three novel HrpL-regulated genes resulted in the identification of additional virulence factors as well as mutants displaying abnormal motility and biofilm phenotypes.


Asunto(s)
Proteínas Bacterianas/genética , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Enfermedades de las Plantas/microbiología , Regulón/genética , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Composición de Base/genética , Secuencia de Bases , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Cadenas de Markov , Modelos Genéticos , Datos de Secuencia Molecular , Familia de Multigenes/genética , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Regiones Promotoras Genéticas/genética , Pyrus/crecimiento & desarrollo , Pyrus/microbiología , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia
19.
Mol Microbiol ; 82(3): 719-33, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21992096

RESUMEN

Cyclic diguanylate (c-di-GMP) is a second messenger controlling many important bacterial processes. The phytopathogen Pectobacterium atrosepticum SCRI1043 (Pba1043) possesses a Type I secretion system (T1SS) essential for the secretion of a proteinaceous multi-repeat adhesin (MRP) required for binding to the host plant. The genes encoding the MRP and the T1SS are tightly linked to genes encoding several putative c-di-GMP regulatory components. We show that c-di-GMP regulates secreted MRP levels in Pba1043 through the action of two genes encoding predicted diguanylate cyclase (DGC) and phosphodiesterase proteins (ECA3270 and ECA3271). Phenotypic analyses and quantification of c-di-GMP levels demonstrated that ECA3270 and ECA3271 regulate secreted MRP levels by increasing and decreasing, respectively, the intracellular levels of c-di-GMP. Moreover, ECA3270 represents the first active DGC reported to have an alternative active-site motif from the 'canonical' GG[D/E]EF. ECA3270 has an A-site motif of SGDEF and analysis of single amino acid replacements demonstrated that the first position of this motif can tolerate functional substitution. Serine in position one of the A-site is also observed in many other DGCs. Finally, another T1SS-linked regulator (ECA3265) also plays an important role in regulating secreted MRP, with an altered localization of MRP observed in an ECA3265 mutant background. Mutants defective in these three T1SS-linked regulators exhibit a reduction in root binding and virulence, confirming that this complex, finely tuned regulation system is crucial in the interaction with host plants.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Pectobacterium/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Eliminación de Gen , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Pectobacterium/patogenicidad , Hidrolasas Diéster Fosfóricas/genética , Liasas de Fósforo-Oxígeno/genética , Raíces de Plantas/microbiología , Solanum tuberosum/microbiología , Virulencia
20.
PLoS One ; 5(10): e13472, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20976052

RESUMEN

BACKGROUND: Dickeya dadantii is a necrotrophic pathogen causing disease in many plants. Previous studies have demonstrated that the type III secretion system (T3SS) of D. dadantii is required for full virulence. HrpL is an alternative sigma factor that binds to the hrp box promoter sequence of T3SS genes to up-regulate their expression. METHODOLOGY/PRINCIPAL FINDINGS: To explore the inventory of HrpL-regulated genes of D. dadantii 3937 (3937), transcriptome profiles of wild-type 3937 and a hrpL mutant grown in a T3SS-inducing medium were examined. Using a cut-off value of 1.5, significant differential expression was observed in sixty-three genes, which are involved in various cellular functions such as type III secretion, chemotaxis, metabolism, regulation, and stress response. A hidden Markov model (HMM) was used to predict candidate hrp box binding sites in the intergenic regions of 3937, including the promoter regions of HrpL-regulated genes identified in the microarray assay. In contrast to biotrophic phytopathgens such as Pseudomonas syringae, among the HrpL up-regulated genes in 3937 only those within the T3SS were found to contain a hrp box sequence. Moreover, direct binding of purified HrpL protein to the hrp box was demonstrated for hrp box-containing DNA fragments of hrpA and hrpN using the electrophoretic mobility shift assay (EMSA). In this study, a putative T3SS effector DspA/E was also identified as a HrpL-upregulated gene, and shown to be translocated into plant cells in a T3SS-dependent manner. CONCLUSION/SIGNIFICANCES: We provide the genome-wide study of HrpL-regulated genes in a necrotrophic phytopathogen (D. dadantii 3937) through a combination of transcriptomics and bioinformatics, which led to identification of several effectors. Our study indicates the extent of differences for T3SS effector protein inventory requirements between necrotrophic and biotrophic pathogens, and may allow the development of different strategies for disease control for these different groups of pathogens.


Asunto(s)
Enterobacteriaceae/genética , Regulación de la Expresión Génica de las Plantas , Genoma Bacteriano , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...