Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Parasit Vectors ; 16(1): 136, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076896

RESUMEN

BACKGROUND: Over the past two decades, Cameroon has recorded one of the highest rates of urban population growth in sub-Saharan Africa. It is estimated that more than 67% of Cameroon's urban population lives in slums, and the situation is far from improving as these neighbourhoods are growing at an annual rate of 5.5%. However, it is not known how this rapid and uncontrolled urbanization affects vector populations and disease transmission in urban versus rural areas. In this study, we analyse data from studies conducted on mosquito-borne diseases in Cameroon between 2002 and 2021 to determine the distribution of mosquito species and the prevalence of diseases they transmit with regards to urban areas versus rural areas. METHODS: A search of various online databases, such as PubMed, Hinari, Google and Google Scholar, was conducted for relevant articles. A total of 85 publications/reports were identified and reviewed for entomological and epidemiological data from the ten regions of Cameroon. RESULTS: Analysis of the findings from the reviewed articles revealed 10 diseases transmitted by mosquitoes to humans across the study regions. Most of these diseases were recorded in the Northwest Region, followed by the North, Far North and Eastern Regions. Data were collected from 37 urban and 28 rural sites. In the urban areas, dengue prevalence increased from 14.55% (95% confidence interval [CI] 5.2-23.9%) in 2002-2011 to 29.84% (95% CI 21-38.7%) in 2012-2021. In rural areas, diseases such as Lymphatic filariasis and Rift valley fever, which were not present in 2002-2011, appeared in 2012-2021, with a prevalence of 0.4% (95% CI 0.0- 2.4%) and 10% (95% CI 0.6-19.4%), respectively. Malaria prevalence remained the same in urban areas (67%; 95% CI 55.6-78.4%) between the two periods, while it significantly decreased in rural areas from 45.87% (95% CI 31.1-60.6%) in 2002-2011 to 39% (95% CI 23.7-54.3%) in the 2012-2021 period (*P = 0.04). Seventeen species of mosquitoes were identified as involved in the transmission of these diseases, of which 11 were involved in the transmission of malaria, five in the transmission of arboviruses and one in the transmission of malaria and lymphatic filariasis. The diversity of mosquito species was greater in rural areas than in urban areas during both periods. Of the articles reviewed for the 2012-2021 period, 56% reported the presence of Anopheles gambiae sensu lato in urban areas compared to 42% reported in 2002-2011. The presence of Aedes aegypti increased in urban areas in 2012-2021 but this species was absent in rural areas. Ownership of long-lasting insecticidal nets varied greatly from one setting to another. CONCLUSIONS: The current findings suggest that, in addition to malaria control strategies, vector-borne disease control approaches in Cameroon should include strategies against lymphatic filariasis and Rift Valley fever in rural areas, and against dengue and Zika viruses in urban areas.


Asunto(s)
Anopheles , Dengue , Filariasis Linfática , Malaria , Fiebre del Valle del Rift , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Camerún/epidemiología , Estudios Prospectivos , Mosquitos Vectores , Dengue/epidemiología
2.
Malar J ; 22(1): 123, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055836

RESUMEN

BACKGROUND: Malaria remains one of the main causes of morbidity and mortality in Cameroon. To inform vector control intervention decision making, malaria vector surveillance was conducted monthly from October 2018 to September 2020 in five selected sentinel sites (Gounougou and Simatou in the North, and Bonabéri, Mangoum and Nyabessang in the South). METHODS: Human landing catches (HLCs), U.S. Centers for Disease Control and Prevention (CDC) light traps, and pyrethrum spray catches (PSCs) were used to assess vector density, species composition, human biting rate (HBR), endophagic index, indoor resting density (IRD), parity, sporozoite infection rates, entomological inoculation rate (EIR), and Anopheles vectorial capacity. RESULTS: A total of 139,322 Anopheles mosquitoes from 18 species (or 21 including identified sub-species) were collected across all sites. Out of the 18 species, 12 were malaria vectors including Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l.., Anopheles nili, Anopheles moucheti, Anopheles paludis, Anopheles demeilloni, Anopheles. pharoensis, Anopheles ziemanni, Anopheles multicinctus, Anopheles tenebrosus, Anopheles rufipes, and Anopheles marshallii. Anopheles gambiae s.l. remains the major malaria vector (71% of the total Anopheles) collected, though An. moucheti and An. paludis had the highest sporozoite rates in Nyabessang. The mean indoor HBR of Anopheles ranged from 11.0 bites/human/night (b/h/n) in Bonabéri to 104.0 b/h/n in Simatou, while outdoors, it varied from 24.2 b/h/n in Mangoum to 98.7 b/h/n in Simatou. Anopheles gambiae s.l. and An. moucheti were actively biting until at least 8:00 a.m. The mean Anopheles IRD was 17.1 females/room, and the parity rate was 68.9%. The mean EIRs for each site were 55.4 infective bites/human/month (ib/h/m) in Gounougou, 99.0 ib/h/m in Simatou, 51.2 ib/h/m in Mangoum, 24.4 ib/h/m in Nyabessang, and 18.1 ib/h/m in Bonabéri. Anopheles gambiae s.l. was confirmed as the main malaria vector with the highest vectorial capacity in all sites based on sporozoite rate, except in Nyabessang. CONCLUSION: These findings highlight the high malaria transmission occurring in Cameroon and will support the National Malaria Control Program to design evidence-based malaria vector control strategies, and deployment of effective and integrated vector control interventions to reduce malaria transmission and burden in Cameroon, where several Anopheles species could potentially maintain year-round transmission.


Asunto(s)
Anopheles , Malaria , Piretrinas , Animales , Femenino , Humanos , Malaria/prevención & control , Camerún/epidemiología , Mosquitos Vectores , Esporozoítos
3.
Pathogens ; 11(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35215196

RESUMEN

Understanding how multiple insecticide resistance mechanisms occur in malaria vectors is essential for efficient vector control. This study aimed at assessing the evolution of metabolic mechanisms and Kdr L995F/S resistance alleles in Anopheles gambiae s.l. from North Cameroon, following long-lasting insecticidal nets (LLINs) distribution in 2011. Female An. gambiae s.l. emerging from larvae collected in Ouro-Housso/Kanadi, Be-Centre, and Bala in 2011 and 2015, were tested for susceptibility to deltamethrin + piperonyl butoxide (PBO) or SSS-tributyl-phosphoro-thrithioate (DEF) synergists, using the World Health Organization's standard protocol. The Kdr L995F/S alleles were genotyped using Hot Ligation Oligonucleotide Assay. Tested mosquitoes identified using PCR-RFLP were composed of An. arabiensis (68.5%), An. coluzzii (25.5%) and An. gambiae (6%) species. From 2011 to 2015, metabolic resistance increased in Ouro-Housso/Kanadi (up to 89.5% mortality to deltametnrin+synergists in 2015 versus <65% in 2011; p < 0.02), while it decreased in Be-Centre and Bala (>95% mortality in 2011 versus 42-94% in 2015; p < 0.001). Conversely, the Kdr L995F allelic frequencies slightly decreased in Ouro-Housso/Kanadi (from 50% to 46%, p > 0.9), while significantly increasing in Be-Centre and Bala (from 0-13% to 18-36%, p < 0.02). These data revealed two evolutionary trends of deltamethrin resistance mechanisms; non-pyrethroid vector control tools should supplement LLINs in North Cameroon.

5.
Molecules ; 26(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34577014

RESUMEN

Previous studies have indicated widespread insecticide resistance in malaria vector populations from Cameroon. However, the intensity of this resistance and underlying mechanisms are poorly known. Therefore, we conducted three cross-sectional resistance surveys between April 2018 and October 2019, using the revised World Health Organization protocol, which includes resistance incidences and intensity assessments. Field-collected Anopheles gambiae s.l. populations from Nkolondom, Nkolbisson and Ekié vegetable farms in the city of Yaoundé were tested with deltamethrin, permethrin, alpha-cypermethrin and etofenprox, using 1× insecticide diagnostic concentrations for resistance incidence, then 5× and 10× concentrations for resistance intensity. Subsamples were analyzed for species identification and the detection of resistance-associated molecular markers using TaqMan® qPCR assays. In Nkolbisson, both An. coluzzii (96%) and An. gambiae s.s. (4%) were found together, whereas only An. gambiae s.s. was present in Nkolondom, and only An. coluzzii was present in Ekié. All three populations were resistant to the four insecticides (<75% mortality rates-MR1×), with intensity generally fluctuating over the time between mod-erate (<98%-MR5×; ≥98%-MR10×) and high (76-97%-MR10×). The kdr L995F, L995S, and N1570Y, and the Ace-1 G280S-resistant alleles were found in An. gambiae from Nkolondom, at 73%, 1%, 16% and 13% frequencies, respectively, whereas only the kdr L995F was found in An. gambiae s.s. from Nkolbisson at a 50% frequency. In An. coluzzii from Nkolbisson and Ekié, we detected only the kdr L995F allele at 65% and 60% frequencies, respectively. Furthermore, expression levels of Cyp6m2, Cyp9k1, and Gste2 metabolic genes were highly upregulated (over fivefold) in Nkolondom and Nkolbisson. Pyrethroid and etofenprox-based vector control interventions may be jeopardized in the prospected areas, due to high resistance intensity, with multiple mechanisms in An. gambiae s.s. and An. coluzzii.


Asunto(s)
Anopheles , Piretrinas , Animales , Camerún/epidemiología , Estudios Transversales , Granjas , Resistencia a los Insecticidas/efectos de los fármacos , Malaria , Mosquitos Vectores , Verduras
6.
Parasit Vectors ; 14(1): 247, 2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964974

RESUMEN

BACKGROUND: Malaria remains a serious public health problem in Cameroon. Implementation of control interventions requires prior knowledge of the local epidemiological situation. Here we report the results of epidemiological and entomological surveys carried out in Tibati, Adamawa Region, Cameroon, an area where malaria transmission is seasonal, 6 years after the introduction of long-lasting insecticidal bed nets. METHODS: Cross-sectional studies were carried out in July 2015 and 2017 in Tibati. Thick blood smears and dried blood spots were collected from asymptomatic and symptomatic individuals in the community and at health centers, respectively, and used for the molecular diagnosis of Plasmodium species. Adult mosquitoes were collected by indoor residual spraying and identified morphologically and molecularly. The infection status of Plasmodium spp. was determined by quantitative PCR, and positivity of PCR-positive samples was confirmed by Sanger sequencing. RESULTS: Overall malaria prevalence in our study population was 55.0% (752/1367) and Plasmodium falciparum was the most prevalent parasite species (94.3%), followed by P. malariae (17.7%) and P. ovale (0.8%); 92 (12.7%) infections were mixed infections. Infection parameters varied according to clinical status (symptomatic/asymptomatic) and age of the sampled population and the collection sites. Infection prevalence was higher in asymptomatic carriers (60.8%), but asexual and sexual parasite densities were lower. Prevalence and intensity of infection decreased with age in both the symptomatic and asymptomatic groups. Heterogeneity in infections was observed at the neighborhood level, revealing hotspots of transmission. Among the 592 Anopheles mosquitoes collected, 212 (35.8%) were An. gambiae, 172 (29.1%) were An. coluzzii and 208 (35.1%) were An. funestus (s.s.). A total of 26 (4.39%) mosquito specimens were infected by Plasmodium sp. and the three Anopheles mosquitoes transmitted Plasmodium at equal efficiency. Surprisingly, we found an An. coluzzii specimen infected by Plasmodium vivax, which confirms circulation of this species in Cameroon. The positivity of all 26 PCR-positive Plasmodium-infected mosquitoes was successively confirmed by sequencing analysis. CONCLUSION: Our study presents the baseline malaria parasite burden in Tibati, Adamawa Region, Cameroon. Our results highlight the high malaria endemicity in the area, and hotspots of disease transmission are identified. Parasitological indices suggest low bednet usage and that implementation of control interventions in the area is needed to reduce malaria burden. We also report for the first time a mosquito vector with naturally acquired P. vivax infection in Cameroon.


Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/fisiología , Insecticidas/farmacología , Malaria/transmisión , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/fisiología , Adolescente , Adulto , Anciano , Animales , Anopheles/clasificación , Anopheles/parasitología , Camerún/epidemiología , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Recién Nacido , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Malaria/epidemiología , Malaria/parasitología , Masculino , Persona de Mediana Edad , Control de Mosquitos , Mosquitos Vectores/clasificación , Mosquitos Vectores/parasitología , Plasmodium/clasificación , Plasmodium/genética , Plasmodium/aislamiento & purificación , Plasmodium/fisiología , Adulto Joven
7.
Infect Dis Poverty ; 8(1): 84, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31594541

RESUMEN

BACKGROUND: The rapid and unplanned urbanization of African cities is considered to increase the risk of urban malaria transmission. The present study objective was to assess factors influencing the spatio-temporal distribution of Anopheles gambiae s.l. larvae in the city of Yaoundé, Cameroon. METHODS: All water bodies were checked once every 2 months for the presence of mosquito larvae from March 2017 to May 2018 in 32 districts of Yaoundé. Physico-chemical characteristics including the size, depth, turbidity, pH, temperature, conductivity, sulfates, organophosphates, hydrogen peroxide (H2O2), conductivity, iron and calcium were recorded and analyzed according to anopheline larvae presence or absence. High resolution satellite images from landsat sentinel Enhanced Thematic Mapper were used for spatial mapping of both field and environmental variables. Bivariate and multivariate logistic regression models were used to identify variables closely associated with anopheline larvae distribution. RESULTS: A total of 18 696 aquatic habitats were checked and only 2942 sites (15.7%) contained anopheline larvae. A high number of sites with anopheline larvae (≥ 69%) presented late instar larvae (L3, L4 and pupae). Anopheline mosquito larvae were sampled from a variety of breeding sites including puddles (51.6%), tire prints (12.9%), wells (11.7%) and drains (11.3%). Bivariate logistic regression analyses associated anopheline larvae presence with the absence of predators, absence of algae, absence of vegetation and depth of less than 1 m. Conductivity, turbidity, organophosphates, H2O2 and temperature were significantly high in breeding sites with anopheline larvae than in breeding sites without these larvae (P <  0.1). Anopheline species collected included An. coluzzii (91.1%) and An. gambiae s.s. (8.9%). GIS mapping indicated a heterogeneous distribution of anopheline breeding habitats in the city of Yaoundé. Land cover analysis indicated high variability of the city of Yaoundé's landscape. CONCLUSIONS: The data confirms adaptation of An. gambiae s.l. to the urban domain in the city of Yaoundé and calls for urgent actions to improve malaria vector control.


Asunto(s)
Distribución Animal , Anopheles/fisiología , Ambiente , Animales , Anopheles/crecimiento & desarrollo , Camerún , Ciudades , Larva/crecimiento & desarrollo , Larva/fisiología , Pupa/crecimiento & desarrollo , Pupa/fisiología , Análisis Espacio-Temporal
8.
Parasit Vectors ; 12(1): 297, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31196161

RESUMEN

BACKGROUND: Effective malaria control relies on evidence-based interventions. Anopheline behaviour and Plasmodium infections were investigated in North Cameroon, following long-lasting insecticidal net (LLIN) distribution in 2010. METHODS: During four consecutive years from 2011 to 2014, adult mosquitoes were collected indoors, outdoors and in exit traps across 38 locations in the Garoua, Pitoa and Mayo-Oulo health districts. Anophelines were morphologically and molecularly identified, then analysed for blood meal origins and Plasmodium falciparum circumsporozoite protein (Pf-CSP). Blood from children under 5 years-old using LLINs was examined for Plasmodium infections. RESULTS: Overall, 9376 anophelines belonging to 14 species/sibling species were recorded. Anopheles gambiae (s.l.) [An. arabiensis (73.3%), An. coluzzii (17.6%) and An. gambiae (s.s.) (9.1%)] was predominant (72%), followed by An. funestus (s.l.) (20.5%) and An. rufipes (6.5%). The recorded blood meals were mainly from humans (28%), cattle (15.6%) and sheep (11.6%) or mixed (45%). Pf-CSP rates were higher indoors (3.2-5.4%) versus outdoors (0.8-2.0%), and increased yearly (χ2 < 18, df = 10, P < 0.03). Malaria prevalence in children under 5 years-old, in households using LLINs was 30% (924/3088). CONCLUSIONS: The present study revealed the variability of malaria vector resting and feeding behaviour, and the persistence of Plasmodium infections regardless the use of LLINs. Supplementary interventions to LLINs are therefore needed to sustain malaria prevention in North Cameroon.


Asunto(s)
Anopheles/fisiología , Control de Enfermedades Transmisibles , Conducta Alimentaria , Malaria Falciparum/prevención & control , Animales , Anopheles/parasitología , Sangre/parasitología , Camerún/epidemiología , Mosquiteros Tratados con Insecticida , Malaria Falciparum/epidemiología , Control de Mosquitos , Mosquitos Vectores/parasitología , Mosquitos Vectores/fisiología , Plasmodium falciparum , Proteínas Protozoarias/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-31075820

RESUMEN

Dam constructions are considered a great concern for public health. The current study aimed to investigate malaria transmission in the Nyabessan village around the Memve'ele dam in South Cameroon. Adult mosquitoes were captured by human landing catches in Nyabessan before and during dam construction in 2000-2006 and 2014-2016 respectively, as well as in the Olama village, which was selected as a control. Malaria vectors were morphologically identified and analyzed for Plasmodium falciparum circumsporozoite protein detection and molecular identification of Anopheles (A.) gambiae species. Overall, ten malaria vector species were identified among 12,189 Anopheles specimens from Nyabessan (N = 6127) and Olama (N = 6062), including A. gambiae Giles (1902), A. coluzzii Coetzee (2013), A. moucheti Evans (1925), A. ovengensis Awono (2004), A. nili Theobald (1903), A. paludis Theobald (1900), A. zieanni, A. marshallii Theobald (1903), A. coustani Laveran (1900), and A. obscurus Grünberg (1905). In Nyabessan, A. moucheti and A. ovengensis were the main vector species before dam construction (16-50 bites/person/night-b/p/n, 0.26-0.71 infective bites/person/night-ib/p/n) that experienced a reduction of their role in disease transmission in 2016 (3-35 b/p/n, 0-0.5 ib/p/n) (p < 0.005). By contrast, the role of A. gambiae s.l. and A. paludis increased (11-38 b/p/n, 0.75-1.2 ib/p/n) (p < 0.01). In Olama, A. moucheti remained the main malaria vector species throughout the study period (p = 0.5). These findings highlight the need for a strong vector-borne disease surveillance and control system around the Memve'ele dam.


Asunto(s)
Malaria/transmisión , Animales , Anopheles/microbiología , Camerún/epidemiología , Femenino , Humanos , Malaria/epidemiología , Mosquitos Vectores , Plasmodium falciparum , Centrales Eléctricas , Estudios Prospectivos , Estudios Retrospectivos
10.
PLoS One ; 14(2): e0212024, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30779799

RESUMEN

The effectiveness of insecticide-based malaria vector control interventions in Africa is threatened by the spread and intensification of pyrethroid resistance in targeted mosquito populations. The present study aimed at investigating the temporal and spatial dynamics of deltamethrin resistance in An. gambiae s.l. populations from North Cameroon. Mosquito larvae were collected from 24 settings of the Garoua, Pitoa and Mayo Oulo Health Districts (HDs) from 2011 to 2015. Two to five days old female An. gambiae s.l. emerging from larval collections were tested for deltamethrin resistance using the World Health Organization's (WHO) standard protocol. Sub samples of test mosquitoes were identified to species using PCR-RFLP and genotyped for knockdown resistance alleles (Kdr 1014F and 1014S) using Hot Ligation Oligonucleotide Assay (HOLA). All the tested mosquitoes were identified as belonging to the An. gambiae complex, including 3 sibling species mostly represented by Anopheles arabiensis (67.6%), followed by Anopheles coluzzii (25.4%) and Anopheles gambiae (7%). Deltamethrin resistance frequencies increased significantly between 2011 and 2015, with mosquito mortality rates declining from 70-85% to 49-73% in the three HDs (Jonckheere-Terstra test statistic (JT) = 5638, P< 0.001), although a temporary increase of mortality rates (91-97%) was seen in the Pitoa and Mayo Oulo HDs in 2012. Overall, confirmed resistance emerged in 10 An. gambiae s.l. populations over the 24 field populations monitored during the study period, from 2011 to 2015. Phenotypic resistance was mostly found in urban settings compared with semi-urban and rural settings (JT = 5282, P< 0.0001), with a spatial autocorrelation between neighboring localities. The Kdr 1014F allelic frequencies in study HDs increased from 0-30% in 2011 to 18-61% in 2014-2015 (JT = 620, P <0.001), especially in An. coluzzii samples. The overall frequency of the Kdr 1014S allele was 0.1%. This study revealed a rapid increase and widespread deltamethrin resistance frequency as well as Kdr 1014F allelic frequencies in An. gambiae s.l. populations over time, emphasizing the urgent need for vector surveillance and insecticide resistance management strategies in Cameroon.


Asunto(s)
Anopheles/efectos de los fármacos , Proteínas de Insectos/genética , Resistencia a los Insecticidas , Nitrilos/farmacología , Piretrinas/farmacología , Animales , Anopheles/genética , Anopheles/crecimiento & desarrollo , Camerún , Femenino , Frecuencia de los Genes , Larva/efectos de los fármacos , Larva/genética , Larva/crecimiento & desarrollo , Malaria/prevención & control , Malaria/transmisión , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Mosquitos Vectores/crecimiento & desarrollo , Planificación Social , Análisis Espacio-Temporal , Remodelación Urbana
11.
Parasit Vectors ; 11(1): 253, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669580

RESUMEN

BACKGROUND: Following the recent discovery of the role of Anopheles rufipes Gough, 1910 in human malaria transmission in the northern savannah of Cameroon, we report here additional information on its feeding and resting habits and its susceptibility to the pyrethroid insecticide deltamethrin. METHODS: From 2011 to 2015, mosquito samples were collected in 38 locations across Garoua, Mayo Oulo and Pitoa health districts in North Cameroon. Adult anophelines collected using outdoor clay pots, window exit traps and indoor spray catches were checked for feeding status, blood meal origin and Plasmodium circumsporozoite protein. The susceptibility of field-collected An. rufipes to deltamethrin was assessed using WHO standard procedures. RESULTS: Of 9327 adult Anopheles collected in the 38 study sites, An. rufipes (6.5%) was overall the fifth most abundant malaria vector species following An. arabiensis (52.4%), An. funestus (s.l.) (20.8%), An. coluzzii (12.6%) and An. gambiae (6.8%). This species was found outdoors (51.2%) or entering houses (48.8%) in 35 suburban and rural locations, together with main vector species. Apart from human blood with index of 37%, An. rufipes also fed on animals including cows (52%), sheep (49%), pigs (16%), chickens (2%) and horses (1%). The overall parasite infection rate of this species was 0.4% based on the detection of P. falciparum circumsporozoite proteins in two of 517 specimens tested. Among the 21 An. rufipes populations assessed for deltamethrin susceptibility, seven populations were classified as "susceptible" (mortality ≥ 98%) , ten as "probable resistant" with a mortality range of 90-97% and four as "resistant" with a mortality range of 80-89%. CONCLUSIONS: This study revealed changeable resting and feeding behaviour of An. rufipes, as well as further evidence on its ability to carry human malaria parasites in North Cameroon. Besides, this species is developing physiological resistance to deltamethrin insecticide which is used in treated nets and agriculture throughout the country, and should be regarded as one of potential targets for the control of residual malaria parasite transmission in Africa.


Asunto(s)
Anopheles/efectos de los fármacos , Fenómenos Ecológicos y Ambientales , Resistencia a los Insecticidas , Insecticidas/farmacología , Mosquitos Vectores/efectos de los fármacos , Nitrilos/farmacología , Piretrinas/farmacología , Animales , Anopheles/fisiología , Conducta Animal , Camerún/epidemiología , Bovinos , Vectores de Enfermedades , Femenino , Humanos , Malaria/epidemiología , Malaria/parasitología , Malaria/prevención & control , Malaria/transmisión , Malaria Falciparum/parasitología , Control de Mosquitos/métodos , Plasmodium falciparum/efectos de los fármacos
12.
Wellcome Open Res ; 3: 164, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30756096

RESUMEN

Background: Malaria remains a major public health problem in Cameroon; however, despite reports on the adaptation of anopheline species to urban habitats, there is still not enough information on malaria transmission pattern in urban settings. In the frame of a larval control trial in the city of Yaoundé, we conducted baseline surveys to assess malaria transmission dynamics in this city. Methods: Adult mosquitoes were collected indoors and outdoors using CDC light traps and human landing catches from March 2017 to March 2018 in 30 districts of Yaoundé, Cameroon. Mosquitoes were sorted by genus and identified to the species level using PCR. The TaqMan method and ELISA were used to determine mosquito infection status to Plasmodium. Bioassays were conducted to assess female Anopheles gambiae susceptibility to insecticides. Results: A total of 218,991 mosquitoes were collected. The main malaria vectors were An. gambiae s.l. (n=6154) and An. funestus s.l. (n=229). Of the 1476 An. gambiae s.l. processed by PCR, 92.19% were An. coluzzii and 7.81% An. gambiae. An. funestus s.l. was composed of 93.01% (173/186) An. funestus and 4.84% (13/186) An. leesoni. The average biting rate of anopheline was significantly high outdoor than indoor (P=0.013). Seasonal variation in mosquito abundance and biting rate was recorded. The infection rate by Plasmodium falciparum was 2.13% (104/4893 mosquitoes processed). The annual entomological inoculation rate was found to vary from 0 to 92 infective bites/man/year (ib/m/y). Malaria transmission risk was high outdoor (66.65 ib/m/y) compared to indoor (31.14 ib/m/y). An. gambiae s.l. was found highly resistant to DDT, permethrin and deltamethrin. High prevalence of the West Africa kdr allele 1014F was recorded and this was not found to influence An. gambiae s.l. infection status.   Conclusion: The study suggests high malaria transmission occurring in the city of Yaoundé and call for immediate actions to improve control strategies.

13.
Parasit Vectors ; 9(1): 341, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27301693

RESUMEN

BACKGROUND: Anopheles funestus is a major vector of malaria in sub-Saharan Africa. However, because it is difficult to colonize, research on this mosquito species has lagged behind other vectors, particularly the understanding of its susceptibility and interactions with the Plasmodium parasite. The present study reports one of the first experimental infections of progeny from wild-caught An. funestus with the P. falciparum parasite providing a realistic avenue for the characterisation of immune responses associated with this infection. METHODS: Wild-fed resting An. funestus females were collected using electric aspirators and kept in cages for four days until they were fully gravid and ready to oviposit. The resulting eggs were reared to adults F1 mosquitoes under insectary conditions. Three to five day-old An. funestus F1 females were fed with infected blood taken from gametocyte carriers using an artificial glass-parafilm feeding system. Feeding rate was recorded and fed mosquitoes were dissected at day 7 to count oocysts in midguts. Parallel experiments were performed with the known Plasmodium-susceptible An. coluzzii Ngousso laboratory strain, to monitor our blood handling procedures and infectivity of gametocytes. RESULTS: The results revealed that An. funestus displays high and similar level of susceptibility to Plasmodium infection compared to An. coluzzii, and suggest that our methodology produces robust feeding and infection rates in wild An. funestus progeny. The prevalence of infection in An. funestus mosquitoes was 38.52 % (range 6.25-100 %) and the median oocyst number was 12.5 (range 1-139). In parallel, the prevalence in An. coluzzii was 39.92 % (range 6.85-97.5 %), while the median oocyst number was 32.1 (range 1-351). CONCLUSIONS: Overall, our observations are in line with the fact that both species are readily infected with P. falciparum, the most common and dangerous malaria parasite in sub-Saharan Africa, and since An. funestus is widespread throughout Africa, malaria vector control research and implementation needs to seriously address this vector species too. Additionally, the present work indicates that it is feasible to generate large number of wild F1 infected An. funestus mosquitoes using membrane feeding assays, which can be used for comprehensive study of interactions with the Plasmodium parasite.


Asunto(s)
Anopheles/parasitología , Plasmodium falciparum/fisiología , Animales , Niño , Preescolar , Conducta Alimentaria , Femenino , Interacciones Huésped-Parásitos , Humanos , Insectos Vectores/parasitología , Estadios del Ciclo de Vida , Malaria Falciparum/parasitología , Membranas Artificiales
14.
J Vector Ecol ; 40(1): 172-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26047198

RESUMEN

From 2003 to 2007, entomological surveys were conducted in Lobito town (Benguela Province, Angola) to determine which Anopheles species were present and to identify the vectors responsible for malaria transmission in areas where workers of the Sonamet Company live. Two types of surveys were conducted: (1) time and space surveys in the low and upper parts of Lobito during the rainy and dry periods; (2) a two-year longitudinal study in Sonamet workers' houses provided with long-lasting insecticide-treated nets (LLIN), "PermaNet," along with the neighboring community. Both species, An. coluzzii (M molecular form) and An. gambiae (S molecular form), were collected. Anopheles coluzzii was predominant during the dry season in the low part of Lobito where larvae develop in natural ponds and temporary pools. However, during the rainy season, An. gambiae was found in higher proportions in the upper part of the town where larvae were collected in domestic water tanks built near houses. Anopheles melas and An. listeri were captured in higher numbers during the dry season and in the low part of Lobito where larvae develop in stagnant brackish water pools. The infectivity rates of An. gambiae s.l. varied from 0.90% to 3.41%.


Asunto(s)
Anopheles/parasitología , Insectos Vectores/parasitología , Control de Mosquitos/métodos , Plasmodium falciparum/patogenicidad , Angola/epidemiología , Animales , Ecosistema , Humanos , Mosquiteros Tratados con Insecticida , Larva , Estudios Longitudinales , Malaria/epidemiología , Malaria/transmisión , Plasmodium falciparum/aislamiento & purificación , Estaciones del Año , Análisis Espacio-Temporal , Encuestas y Cuestionarios
15.
Parasit Vectors ; 6: 41, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23433176

RESUMEN

BACKGROUND: Increasing incidence of DDT and pyrethroid resistance in Anopheles mosquitoes is seen as a limiting factor for malaria vector control. The current study aimed at an in-depth characterization of An. gambiae s.l. resistance to insecticides in Cameroon, in order to guide malaria vector control interventions. METHODS: Anopheles gambiae s.l. mosquitoes were collected as larvae and pupae from six localities spread throughout the four main biogeographical domains of Cameroon and reared to adults in insectaries. Standard WHO insecticide susceptibility tests were carried out with 4% DDT, 0.75% permethrin and 0.05% deltamethrin. Mortality rates and knockdown times (kdt50 and kdt95) were determined and the effect of pre-exposure to the synergists DEF, DEM and PBO was assessed. Tested mosquitoes were identified to species and molecular forms (M or S) using PCR-RFLP. The hot ligation method was used to depict kdr mutations and biochemical assays were conducted to assess detoxifying enzyme activities. RESULTS: The An. arabiensis population from Pitoa was fully susceptible to DDT and permethrin (mortality rates>98%) and showed reduced susceptibility to deltamethrin. Resistance to DDT was widespread in An. gambiae s.s. populations and heterogeneous levels of susceptibility to permethrin and deltamethrin were observed. In many cases, prior exposure to synergists partially restored insecticide knockdown effect and increased mortality rates, suggesting a role of detoxifying enzymes in increasing mosquito survival upon challenge by pyrethroids and, to a lower extent DDT. The distribution of kdr alleles suggested a major role of kdr-based resistance in the S form of An. gambiae. In biochemical tests, all but one mosquito population overexpressed P450 activity, whereas baseline GST activity was low and similar in all field mosquito populations and in the control. CONCLUSION: In Cameroon, multiple resistance mechanisms segregate in the S form of An. gambiae resulting in heterogeneous resistance profiles, whereas in the M form and An. arabiensis insecticide tolerance seems to be essentially mediated by enzyme-based detoxification. Synergists partially restored susceptibility to pyrethroid insecticides, and might help mitigate the impact of vector resistance in the field. However, additional vector control tools are needed to further impact on malaria transmission in such settings.


Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a Múltiples Medicamentos , Resistencia a los Insecticidas , Insecticidas/farmacología , Animales , Anopheles/clasificación , Anopheles/genética , Camerún , DDT/farmacología , Inactivación Metabólica , Larva/efectos de los fármacos , Nitrilos/farmacología , Permetrina/farmacología , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Pupa/efectos de los fármacos , Piretrinas/farmacología , Análisis de Supervivencia
16.
PLoS One ; 7(9): e44189, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028499

RESUMEN

Human antibody (Ab) response to Anopheles whole saliva, used as biomarker of Anopheles exposure, was investigated over a period of two years (2008-2009), in children between 2 to 9 years old, before and after the introduction of three different malaria vector control methods; deltamethrin treated long lasting impregnated nets (LLIN) and insecticide treated plastic sheeting (ITPS)--Zero Fly®) (ITPS-ZF), deltamethrin impregnated Durable (Wall) Lining (ITPS-DL--Zerovector®) alone, and indoor residual spraying (IRS) with lambdacyhalothrin alone. These different vector control methods resulted in considerable decreases in all three entomological (82.4%), parasitological (54.8%) and immunological criteria analyzed. The highest reductions in the number of Anopheles collected and number of positive blood smears, respectively 82.1% and 58.3%, were found in Capango and Canjala where LLIN and ITPS-ZF were implemented. The immunological data based on the level of anti-saliva IgG Ab in children of all villages dropped significantly from 2008 to 2009, except in Chissequele. These results indicated that these three vector control methods significantly reduced malaria infections amongst the children studied and IRS significantly reduced the human-Anopheles contact. The number of Anopheles, positive blood smears, and the levels of anti-saliva IgG Ab were most reduced when LLIN and ITPS-ZF were used in combination, compared to the use of one vector control method alone, either ITPS-DL or IRS. Therefore, as a combination of two vector control methods is significantly more effective than one control method only, this control strategy should be further developed at a more global scale.


Asunto(s)
Anopheles/inmunología , Anticuerpos/inmunología , Saliva/inmunología , Angola , Animales , Anticuerpos/sangre , Niño , Preescolar , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Control de Mosquitos/métodos , Vigilancia en Salud Pública
17.
BMC Res Notes ; 4: 463, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22035176

RESUMEN

BACKGROUND: The spread of insecticide resistance in the malaria mosquito, Anopheles gambiae is a serious threat for current vector control strategies which rely on the use of insecticides. Two mutations at position 1014 of the S6 transmembrane segment of domain II in the voltage gated sodium channel, known as kdr (knockdown resistance) mutations leading to a change of a Leucine to a Phenylalanine (L1014F) or to a Serine (L1014S) confer resistance to DDT and pyrethroid insecticides in the insect. This paper presents the current distribution of the kdr alleles in wild Anopheles gambiae populations in Cameroon. RESULTS: A total of 1,405 anopheline mosquitoes were collected from 21 localities throughout Cameroon and identified as An. gambiae (N = 1,248; 88.8%), An. arabiensis (N = 120; 8.5%) and An. melas (N = 37; 2.6%). Both kdr alleles 1014F and 1014S were identified in the M and S molecular forms of An. gambiae s.s. The frequency of the 1014F allele ranged from 1.7 to 18% in the M-form, and from 2 to 90% in the S-form. The 1014S allele ranged from 3-15% in the S-form and in the M-form its value was below 3%. Some specimens were found to carry both resistant kdr alleles. CONCLUSION: This study provides an updated distribution map of the kdr alleles in wild An. gambiae populations in Cameroon. The co-occurrence of both alleles in malaria mosquito vectors in diverse ecological zones of the country may be critical for the planning and implementation of malaria vector control interventions based on IRS and ITNs, as currently ongoing in Cameroon.

18.
PLoS One ; 5(12): e15596, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21179476

RESUMEN

To optimize malaria control, WHO has prioritised the need for new indicators to evaluate the efficacy of malaria vector control strategies. The gSG6-P1 peptide from gSG6 protein of Anopheles gambiae salivary glands was previously designed as a specific salivary sequence of malaria vector species. It was shown that the quantification of human antibody (Ab) responses to Anopheles salivary proteins in general and especially to the gSG6-P1 peptide was a pertinent biomarker of human exposure to Anopheles. The present objective was to validate this indicator in the evaluation of the efficacy of Insecticide Treated Nets (ITNs). A longitudinal evaluation, including parasitological, entomological and immunological assessments, was conducted on children and adults from a malaria-endemic area before and after the introduction of ITNs. Significant decrease of anti-gSG6-P1 IgG response was observed just after the efficient ITNs use. Interestingly, specific IgG Ab level was especially pertinent to evaluate a short-time period of ITNs efficacy and at individual level. However, specific IgG rose back up within four months as correct ITN use waned. IgG responses to one salivary peptide could constitute a reliable biomarker for the evaluation of ITN efficacy, at short- and long-term use, and provide a valuable tool in malaria vector control based on a real measurement of human-vector contact.


Asunto(s)
Anopheles/metabolismo , Malaria/metabolismo , Saliva/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Angola , Animales , Formación de Anticuerpos , Biomarcadores/metabolismo , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Inmunoglobulina G/química , Péptidos/química
19.
Am J Trop Med Hyg ; 83(1): 115-21, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20595489

RESUMEN

For the fight against malaria, the World Health Organization (WHO) has emphasized the need for indicators to evaluate the efficacy of vector-control strategies. This study investigates a potential immunological marker, based on human antibody responses to Anopheles saliva, as a new indicator to evaluate the efficacy of insecticide-treated nets (ITNs). Parasitological, entomological, and immunological assessments were carried out in children and adults from a malaria-endemic region of Angola before and after the introduction of ITNs. Immunoglobulin G (IgG) levels to An. gambiae saliva were positively associated with the intensity of An. gambiae exposure and malaria infection. A significant decrease in the anti-saliva IgG response was observed after the introduction of ITNs, and this was associated with a drop in parasite load. This study represents the first stage in the development of a new indicator to evaluate the efficacy of malaria vector-control strategies, which could apply in other arthropod vector-borne diseases.


Asunto(s)
Antígenos de Protozoos/inmunología , Biomarcadores/análisis , Insectos Vectores/efectos de los fármacos , Insecticidas/farmacología , Malaria Falciparum/prevención & control , Control de Mosquitos , Angola , Animales , Anopheles/efectos de los fármacos , Anticuerpos/inmunología , Mordeduras y Picaduras , Humanos , Pruebas Inmunológicas , Técnicas In Vitro , Mosquiteros Tratados con Insecticida , Malaria/prevención & control , Saliva/inmunología , Especificidad de la Especie
20.
BMC Infect Dis ; 10: 119, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20482824

RESUMEN

BACKGROUND: Highland areas of Africa are mostly malaria hypoendemic, due to climate which is not appropriate for anophelines development and their reproductive fitness. In view of designing a malaria control strategy in Western Cameroon highlands, baseline data on anopheline species bionomics were collected. METHODS: Longitudinal entomological surveys were conducted in three localities at different altitudinal levels. Mosquitoes were captured when landing on human volunteers and by pyrethrum spray catches. Sampled Anopheles were tested for the presence of Plasmodium circumsporozoite proteins and their blood meal origin with ELISA. Entomological parameters of malaria epidemiology were assessed using Mac Donald's formula. RESULTS: Anopheline species diversity and density decreased globally from lowland to highland. The most aggressive species along the altitudinal transect was Anopheles gambiae s.s. of S molecular form, followed in the lowland and on the plateau by An. funestus, but uphill by An. hancocki. An. gambiae and An. ziemanni exhibited similar seasonal biting patterns at the different levels, whereas different features were observed for An. funestus. Only indoor resting species could be captured uphill; it is therefore likely that endophilic behaviour is necessary for anophelines to climb above a certain threshold. Of the ten species collected along the transect, only An. gambiae and An. funestus were responsible for malaria transmission, with entomological inoculation rates (EIR) of 90.5, 62.8 and zero infective bites/human/year in the lowland, on the plateau and uphill respectively. The duration of gonotrophic cycle was consistently one day shorter for An. gambiae as compared to An. funestus at equal altitude. Altitudinal climate variations had no effect on the survivorship and the subsequent life expectancy of the adult stage of these malaria vectors, but most probably on aquatic stages. On the contrary increasing altitude significantly extended the duration of gonotrophic cycle and reduced: the EIR, their preference to human blood and consequently the malaria stability index. CONCLUSION: Malaria epidemiological rooting in the outskirts of Western Cameroon highlands evolves with increasing altitude, gradually from stable to unstable settings. This suggests a potential risk of malaria epidemic in highlands, and the need for a continuous epidemiological surveillance.


Asunto(s)
Anopheles/crecimiento & desarrollo , Anopheles/parasitología , Ecología , Malaria/transmisión , Plasmodium/aislamiento & purificación , Animales , Sangre/inmunología , Camerún , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Proteínas Protozoarias/aislamiento & purificación , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...