Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35284579

RESUMEN

Background: Coronaviruses, members of the Coronavirinae subfamily in the Coronaviridae family, are enveloped and positive-stranded RNA viruses that infect animals and humans, causing intestinal and respiratory infections. Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This disease appeared, for the first time (December 2019), in China and has spread quickly worldwide causing a large number of deaths. Considering the global threat, the World Health Organization (WHO) has declared, in March 2020, COVID-19 as a pandemic. Many studies suggest the great effect of the existing vaccines to protect against symptomatic cases of death by the COVID-19 virus. This paper, proposes to compare the main antigenic proteins sequences of the existing vaccines with Spike (S) protein of the SARS-CoV-2 genome. Our choice of S protein is justified by the major role that plays it in the receptor recognition and membrane fusion process based on an intelligent system. Herein, we focus on finding a correlation between S protein and compulsory vaccines in the countries that have a less death number by COVID-19 virus. In this work, we have used a combination of coding methods, signal processing, and bioinformatic techniques with the goal to localize the similar patterns between the S gene of the SARS-Cov-2 genome and 14 investigated vaccines. Results: A total of 8 similar sequences which have a size more than 6 amino acids were identified. Further, these comparisons propose that these segments can be implicated in the immune response against COVID-19, which may explain the wide variation by country in the severity of this viral threat. Conclusions: Our in silico study suggests a possible protective effect of Poliovirus, HIB, Hepatitis B, PCV10, Measles, Mumps, and Rubella (MMR) vaccines against COVID-19.

2.
BMC Bioinformatics ; 22(1): 163, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33771096

RESUMEN

BACKGROUND: Coronavirus Disease 2019 (COVID-19) is a viral pandemic disease that may induce severe pneumonia in humans. In this paper, we investigated the putative implication of 12 vaccines, including BCG, OPV and MMR in the protection against COVID-19. Sequences of the main antigenic proteins in the investigated vaccines and SARS-CoV-2 proteins were compared to identify similar patterns. The immunogenic effect of identified segments was, then, assessed using a combination of structural and antigenicity prediction tools. RESULTS: A total of 14 highly similar segments were identified in the investigated vaccines. Structural and antigenicity prediction analysis showed that, among the identified patterns, three segments in Hepatitis B, Tetanus, and Measles proteins presented antigenic properties that can induce putative protective effect against COVID-19. CONCLUSIONS: Our results suggest a possible protective effect of HBV, Tetanus and Measles vaccines against COVID-19, which may explain the variation of the disease severity among regions.


Asunto(s)
Antígenos Virales/inmunología , SARS-CoV-2/química , Proteínas Virales/inmunología , Vacunas Virales/inmunología , Vacuna BCG , COVID-19 , Vacunas contra la COVID-19 , Simulación por Computador , Protección Cruzada , Humanos , Conformación Proteica
3.
Biomed Signal Process Control ; 64: 102207, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33101452

RESUMEN

Repetitive DNA sequences occupy the major proportion of DNA in the human genome and even in the other species' genomes. The importance of each repetitive DNA type depends on many factors: structural and functional roles, positions, lengths and numbers of these repetitions are clear examples. Conserving such DNA sequences or not in different locations in the chromosome remains a challenge for researchers in biology. Detecting their location despite their great variability and finding novel repetitive sequences remains a challenging task. To side-step this problem, we developed a new method based on signal and image processing tools. In fact, using this method we could find repetitive patterns in DNA images regardless of the repetition length. This new technique seems to be more efficient in detecting new repetitive sequences than bioinformatics tools. In fact, the classical tools present limited performances especially in case of mutations (insertion or deletion). However, modifying one or a few numbers of pixels in the image doesn't affect the global form of the repetitive pattern. As a consequence, we generated a new repetitive patterns database which contains tandem and dispersed repeated sequences. The highly repetitive sequences, we have identified in X and Y chromosomes, are shown to be located in other human chromosomes or in other genomes. The data we have generated is then taken as input to a Convolutional neural network classifier in order to classify them. The system we have constructed is efficient and gives an average of 94.4% as recognition score.

4.
Genomics ; 112(6): 4189-4202, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32645523

RESUMEN

Coronaviruses are responsible on respiratory diseases in animal and human. The combination of numerical encoding techniques and digital signal processing methods are becoming increasingly important in handling large genomic data. In this paper, we propose to analyze the SARS-CoV-2 genomic signature using the combination of different nucleotide representations and signal processing tools in the aim to identify its genetic origin. The sequence of SARS-CoV-2 was compared with 21 relevant sequences including Bat, Yak and Pangolin coronavirus sequences. In addition, we developed a new algorithm to locate the nucleotide modifications. The results show that the Bat and Pangolin coronaviruses were the most related to SARS-CoV-2 with 96% and 86% of identity all along the genome. Within the S gene sequence, the Pangolin sequence presents local highest nucleotide identity. Those findings suggest genesis of SARS-Cov-2 through evolution from Bat and Pangolin strains. This study offers new ways to automatically characterize viruses.


Asunto(s)
Quirópteros/virología , Coronavirus/genética , Genoma Viral/genética , Pangolines/virología , Recombinación Genética , SARS-CoV-2/genética , Algoritmos , Animales , Genómica/métodos , Humanos
5.
Med Biol Eng Comput ; 57(10): 2289-2304, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31422557

RESUMEN

Helitrons are mobile sequences which belong to the class 2 of eukaryotic transposons. Their specificity resides in their mechanism of transposition: the rolling circle mechanism. They play an important role in remodeling proteomes due to their ability to modify existing genes and introducing new ones. A major difficulty in identifying and classifying Helitron families comes from the complex structure, the unspecified length, and the unbalanced appearance number of each Helitron type. The Helitron's recognition is still not solved in literature. The purpose of this paper is to characterize and classify Helitron types using spectral features and support vector machine (SVM) classification technique. Thus, the helitronic DNA is transformed into a numerical form using the FCGS2 coding technique. Then, a set of spectral features is extracted from the smoothed Fourier transform applied on the FCGS2 signals. Based on the spectral signature and the classification's confusion matrix, we demonstrated that some specific classes which do not show similarities, such as HelitronY2 and NDNAX3, are easily discriminated with important accuracy rates exceeding 90%. However, some Helitron types have great similarities such as the following: Helitron1, HelitronY1, HelitronY1A, and HelitronY4. Our system is also able to predict them with promising values reaching 70%. Graphical abstract The Helitron recognizer based on features extracted from smoothed Fourier transform.


Asunto(s)
Bases de Datos como Asunto , Análisis de Fourier , Máquina de Vectores de Soporte , Animales , Caenorhabditis elegans/genética , Cromosomas/genética , Genoma de los Helmintos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...