Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuromodulation ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38159099

RESUMEN

OBJECTIVE: This study aimed to assess the effect of transcranial direct current stimulation (tDCS) and exercise on blood-brain barrier (BBB) permeability in humans as assessed through the quantification of the salivary protein biomarker S100B. It was hypothesized that active tDCS would induce a significant increase in salivary S100B concentration when compared with sham stimulation and no stimulation. It also was hypothesized that the increase in salivary S100B concentration would be greater after active tDCS and exercise than after tDCS or exercise alone. MATERIALS AND METHODS: A total of 13 healthy adults (five male, eight female), ranging in age from 21 to 32 years, underwent three experimental conditions (active tDCS, sham tDCS, inactive control). To assess exercise- and tDCS-induced changes in BBB permeability, S100B in saliva was measured. Saliva samples were taken before tDCS, after tDCS, and immediately after a ramped cycling time-to-exhaustion (TTE) task. Active tDCS involved the application of anodal stimulation over the primary motor cortex for 20 minutes at 2 mA. RESULTS: S100B concentrations in the control condition did not differ significantly from the active condition (estimate = 0.10, SE = 0.36, t = 0.27, p = 0.79) or the sham condition (estimate = 0.33, SE = 0.36, t = 0.89, p = 0.38). Similarly, S100B concentrations at baseline did not differ significantly from post-intervention (estimate = -0.35, SE = 0.34, t = -1.03, p = 0.31) or post-TTE (estimate = 0.66, SE = 0.34, t = 1.93, p = 0.06). CONCLUSIONS: This research provides novel insight into the effect of tDCS and exercise on S100B-indicated BBB permeability in humans. Although the effects of tDCS were not significant, increases in salivary S100B after a fatiguing cycling task may indicate exercise-induced changes in BBB permeability.

2.
Br J Pain ; 17(3): 244-254, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37342399

RESUMEN

Background: The dorsolateral prefrontal cortex (DLPFC) has been implicated in the modulation of pain-related signals. Given this involvement, manipulation of the DLPFC through transcranial direct current stimulation (tDCS) may influence internal pain modulation and decrease pain sensitivity. Acute stress is also thought to affect pain, with increased pain sensitivity observed following the presentation of an acute stressor. Methods: A total of 40 healthy adults (50% male), ranging in age from 19 to 28 years (M = 22.13, SD = 1.92), were randomly allocated to one of two stimulation conditions (active and sham). High-definition tDCS (HD-tDCS) was applied for 10 min at 2 mA, with the anode placed over the left DLPFC. Stress was induced after HD-tDCS administration using a modified version of the Trier Social Stress Test. Pain modulation and sensitivity were assessed through the conditioned pain modulation paradigm and pressure pain threshold measurements, respectively. Results: Compared to sham stimulation, active stimulation produced a significant increase in pain modulation capacity. No significant change in pain sensitivity and stress-induced hyperalgesia was observed following active tDCS. Conclusion: This research shows novel evidence that anodal HD-tDCS over the DLPFC significantly enhances pain modulation. However, HD-tDCS had no effect on pain sensitivity or stress-induced hyperalgesia. The observed effect on pain modulation after a single dose of HD-tDCS over the DLPFC is a novel finding that informs further research into the utility of HD-tDCS in the treatment of chronic pain by presenting the DLPFC as an alternative target site for tDCS-induced analgesia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA