Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Microorganisms ; 10(2)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35208832

RESUMEN

The goal of the present work was to determine the diversity of prokaryotes involved in anaerobic oil degradation in oil fields. The composition of the anaerobic oil-degrading methanogenic enrichment obtained from an oil reservoir was determined by 16S rRNA-based survey, and the facultatively anaerobic chemoorganotrophic bacterial strain HO-Ch2T was isolated and studied using polyphasic taxonomy approach and genome sequencing. The strain HO-Ch2T grew optimally at 28 °C, pH 8.0, and 1-2% (w/v) NaCl. The 16S rRNA gene sequence of the strain HO-Ch2T had 98.8% similarity with the sequence of Actinotalea ferrariae CF5-4T. The genomic DNA G + C content of strain HO-Ch2T was 73.4%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the genome of strain HO-Ch2T and Actinotalea genomes were 79.8-82.0% and 20.5-22.2%, respectively, i.e., below the thresholds for species delineation. Based on the phylogenomic, phenotypic, and chemotaxonomic characterization, we propose strain HO-Ch2T (= VKM Ac-2850T = KCTC 49656T) as the type strain of a new species within the genus Actinotalea, with the name Actinotalea subterranea sp. nov. Based on the phylogenomic analysis of 187 genomes of Actinobacteria we propose the taxonomic revision of the genera Actinotalea and Pseudactinotalea and of the family Actinotaleaceae. We also propose the reclassification of Cellulomonas carbonis as Actinotalea carbonis comb. nov., Cellulomonas bogoriensis as Actinotalea bogoriensis comb. nov., Actinotalea caeni as Pseudactinotalea caeni comb. nov., and the transfer of the genus Pseudactinotalea to the family Ruaniaceae of the order Ruaniales.

3.
Data Brief ; 25: 104319, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31428667

RESUMEN

Shinella sp. strain JR1-6 is a Gram-negative, facultatively anaerobic, non-spore-forming, motile, rod-shaped bacterium isolated from radionuclide- and nitrate-contaminated groundwater. This bacterium reduces nitrate to N2. Strain JR1-6 has potential for removal of nitrate contamination, which is the main reason for the interest in sequencing its genome. Here, we present a set of features of Shinella sp. strain JR1-6, together with the description of its genomic sequencing and annotation. The draft genome of strain JR1-6 has a size of ∼7.09 Mb and contains 6,945 genes, including 62 RNA genes. In the genome of strain JR1-6, the genes were revealed encoding nitrate reduction to N2, as well as the genes associated with metal resistance, showing its adaptation to the conditions of the environment and possible role in nitrate removal from contaminated groundwater. The draft genome sequence of Shinella sp. strain JR1-6 is available at DDBJ/EMBL/GenBank under the accession no. SHMI00000000.

4.
Microbiol Resour Announc ; 8(29)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320421

RESUMEN

The draft genome sequence of a mesophilic fermenting bacterium, Soehngenia sp. strain 1933P, isolated from production water of the Binagady petroleum reservoir (Republic of Azerbaijan), is presented. The genome is annotated for elucidation of the metabolic potential and taxonomic position of strain 1933P.

5.
Microbiol Resour Announc ; 8(29)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320436

RESUMEN

The draft genome sequence of Geotoga petraea strain HO-Geo1, a bacterium isolated from production water of the Vostochno-Anzirskoe petroleum reservoir in Russia, is presented. The genome of strain HO-Geo1 is annotated for elucidation of the metabolic potential and its possible function in the subsurface microbial community and biotechnological application.

6.
Int J Syst Evol Microbiol ; 69(10): 3001-3008, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31145676

RESUMEN

A rod-shaped, spore-forming, thermophilic, chemoorganotrophic, aerobic or facultatively anaerobic bacterial strain, 1017T, was isolated from production water sampled at the Dagang oilfield (PR China), and was characterized by using a polyphasic approach. The strain is capable of anaerobic glucose fermentation. Nitrate is reduced to nitrite. Optimal growth was observed at 60-65 °C, at pH between pH 7.0 and 7.5, and with 1-2 % (w/v) NaCl. The major cellular fatty acids were iso-C17 : 0, anteiso-C17 : 0, iso-C15 : 0, iso-C16 : 0 and C16 : 0. The predominant polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. Phylogenetic analysis based on the 16S rRNA, gyrB and parE gene sequences indicated that the isolate belonged to the genus Geobacillus and was most closely related to Geobacillus thermoleovorans KCTC 3570T (99.5, 96.1 and 97.9 % sequence similarity, respectively). Genome sequencing revealed a genome size of 3.57495 Mb and a DNA G+C content of 51.8 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between the genomes of strain 1017T and G. thermoleovorans KCTC 3570T were 95.9 and 64.9 %, respectively. Results of phylogenomic metrics analysis of the genome and 1172 core genes of strain 1017T and its physiological and biochemical characteristics confirmed that strain 1017T represented a novel species of the genus Geobacillus, for which the name Geobacillusproteiniphilus sp. nov. is proposed. The type strain is 1017T (=VKM B-3132T=KCTC 33986T).


Asunto(s)
Geobacillus/clasificación , Yacimiento de Petróleo y Gas/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Geobacillus/aislamiento & purificación , Calor , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
Artículo en Inglés | MEDLINE | ID: mdl-30533832

RESUMEN

The draft genome sequence of an anaerobic fermenting bacterium, "Sphaerochaeta halotolerans" strain 4-11T, isolated from formation water of a low-temperature petroleum reservoir in Russia is presented. The genome is annotated to elucidate the taxonomic position of the strain 4-11T and to extend the public genome database.

8.
Artículo en Inglés | MEDLINE | ID: mdl-30533852

RESUMEN

The draft genome sequence of the thermophilic sulfate-reducing bacterium "Desulfofundulus salinum" strain 435T, isolated from condensate water of the Igrim high-temperature gas field (Western Siberia, Russia), is presented here. The genome is annotated to elucidate the taxonomic position of strain 435T.

9.
Data Brief ; 21: 882-887, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30426040

RESUMEN

Two strains, 'Pusillimonas nitritireducens' JR1/69-2-13T and 'Pusillimonas subterraneus' JR1/69-3-13T, of aerobic, motile, Gram-negative, non-spore-forming, organotrophic, psychrotolerant bacteria were isolated from a sample of nitrate- and radionuclide-contaminated groundwater in Russia. Here we describe the draft genomes of these strains. The sequenced and annotated genome of the strain JR1/69-2-13T contained 4.3 Mbp with 4108 protein-coding genes. The genome of the strain JR1/69-3-13T contained 4.5 Mbp with 4260 protein-coding genes. Genome analysis of both strains provides an insight into the genomic basis of their resistance to nitrate, heavy metals and metalloids. The draft genome sequences of strains 'Pusillimonas nitritireducens' JR1/69-2-13T and 'Pusillimonas subterraneus' JR1/69-3-13T are available at DDBJ/EMBL/GenBank under the accession nos. https://www.ncbi.nlm.nih.gov/nuccore/PDNV00000000 and https://www.ncbi.nlm.nih.gov/nuccore/PDNW00000000, respectively.

10.
Front Microbiol ; 9: 1985, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30190715

RESUMEN

The goal of the present work was to investigate the physicochemical and radiochemical conditions and the composition of the microbial community in the groundwater of a suspended surface repository for radioactive waste (Russia) and to determine the possibility of in situ groundwater bioremediation by removal of nitrate ions. Groundwater in the repository area (10-m depth) had elevated concentrations of strontium, tritium, nitrate, sulfate, and bicarbonate ions. High-throughput sequencing of the V3-V4/V4 region of the 16S rRNA gene revealed the presence of members of the phyla Proteobacteria (genera Acidovorax, Simplicispira, Thermomonas, Thiobacillus, Pseudomonas, Brevundimonas, and uncultured Oxalobacteraceae), Firmicutes (genera Bacillus and Paenibacillus), and Actinobacteria (Candidatus Planktophila, Gaiella). Canonical correspondence analysis suggested that major contaminant - nitrate, uranium, and sulfate shaped the composition of groundwater microbial community. Groundwater samples contained culturable aerobic organotrophic, as well as anaerobic fermenting, iron-reducing, and denitrifying bacteria. Pure cultures of 33 bacterial strains belonging to 15 genera were isolated. Members of the genera Pseudomonas, Rhizobium, Cupriavidus, Shewanella, Ensifer, and Thermomonas reduced nitrate to nitrite and/or dinitrogen. Application of specific primers revealed the nirS and nirK genes encoding nitrite reductases in bacteria of the genera Pseudomonas, Rhizobium, and Ensifer. Nitrate reduction by pure bacterial cultures resulted in decreased ambient Eh. Among the organic substrates tested, sodium acetate and milk whey were the best for stimulation of denitrification by the microcosms with groundwater microorganisms. Injection of these substrates into the subterranean horizon (single-well push-pull test) resulted in temporary removal of nitrate ions in the area of the suspended radioactive waste repository and confirmed the possibility for in situ application of this method for bioremediation.

11.
Genome Announc ; 6(25)2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29930062

RESUMEN

Here, we describe the draft genome sequence of Shewanella xiamenensis strain DCB2-1, isolated from nitrate- and radionuclide-contaminated groundwater. This strain is able to reduce nitrate, Tc(VII), Cr(VI), Fe(III), and U(VI), and its genome sequence contains several gene sets encoding denitrification, resistance to heavy metals, and reduction of metals and metalloids.

12.
Genome Announc ; 6(25)2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29930073

RESUMEN

The draft genome sequence of Roseomonas aestuarii strain JR1/69-1-13, an aerobic chemoorganotrophic bacterium isolated from nitrate- and radionuclide-contaminated groundwater in Russia, is presented here. The genome was annotated to elucidate the genomic basis for the strain's adaptation to the environment and its resistance to nitrate, heavy metals, and metalloids.

13.
Genom Data ; 11: 95-97, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28070486

RESUMEN

The draft genome sequence of Geobacillus sp. strain 1017, a thermophilic aerobic oil-oxidizing bacterium isolated from formation water of the Dagang high-temperature oilfield, China, is presented here. The genome comprised 3.6 Mbp, with the G + C content of 51.74%. The strain had a number of genes responsible for numerous metabolic and transport systems, exopolysaccharide biosynthesis, and decomposition of sugars and aromatic compounds, as well as the genes related to resistance to metals and metalloids. The genome sequence is available at DDBJ/EMBL/GenBank under the accession no MQMG00000000. This genome is annotated for elucidation of the genomic and phenotypic diversity of new thermophilic alkane-oxidizing bacteria of the genus Geobacillus.

14.
Genome Announc ; 4(4)2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27491973

RESUMEN

The draft genome sequence of Geobacillus subterraneus strain K, a thermophilic aerobic oil-oxidizing bacterium isolated from production water of the Uzen high-temperature oil field in Kazakhstan, is presented here. The genome is annotated for elucidation of the genomic and phenotypic diversity of thermophilic alkane-oxidizing bacteria.

15.
Genome Announc ; 4(3)2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27284131

RESUMEN

The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus.

16.
Syst Appl Microbiol ; 28(1): 43-53, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15709364

RESUMEN

Four thermophilic, spore-forming bacterial strains, DS1(T), DS2, 46 and 49, were isolated from the high-temperature Dagang oilfield, located in China. The strains were identified by using the polyphasic taxonomy approach. These were aerobic, gram-positive, rod-shaped, moderately thermophilic (with an optimum growth temperature of 60-65 degrees C), chemoorganotrophic bacteria capable of growing on various sugars, carboxylic acids and crude oil. Two strains, DS1(T) and DS2, were capable of growing on individual saturated hydrocarbons. The G + C content of the DNA of strains DS1(T) and DS2 was 54.5 and 53.8 mol%, respectively. The phylogenetic analysis of the 16S rDNA of strains DS1(T) and DS2 showed that they form a separate cluster within the genus Geobacillus. The cellular fatty acids of the isolates were dominated by iso-15:0, iso-16:0 and iso-17:0 acids, which are the typical fatty acids of bacteria from the genus Geobacillus. The DNA-DNA hybridization study and the comparative analysis of the morphological and chemotaxonomic characteristics of strains DS1(T) and DS2 showed that they differ from the previously described Geobacillus species and belong to a new species, which was called Geobacillus jurassicus. DS1(T) (=VKM B2301(T), = DSM 15726(T)) is the type strain of this species. According to both DNA-DNA reassociation studies and 16S rDNA sequence analysis, two other strains, 46 and 49, were assigned to the species G. stearothermophilus. In this paper, we provide evidence that the new combinations G. stearothermophilus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans may be considered to be valid.


Asunto(s)
Bacillaceae/clasificación , Bacillaceae/aislamiento & purificación , Petróleo/microbiología , Aerobiosis , Bacillaceae/citología , Bacillaceae/fisiología , Técnicas de Tipificación Bacteriana , Composición de Base , Metabolismo de los Hidratos de Carbono , Ácidos Carboxílicos/metabolismo , China , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , ADN Ribosómico/química , ADN Ribosómico/aislamiento & purificación , Microbiología Ambiental , Ácidos Grasos/análisis , Ácidos Grasos/aislamiento & purificación , Genes de ARNr , Violeta de Genciana , Hidrocarburos/metabolismo , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Petróleo/metabolismo , Fenazinas , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Esporas Bacterianas/citología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...