Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 20(7): 2858-2870, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38531828

RESUMEN

Accuracy and sophistication of in silico models of structure, internal dynamics, and cohesion of molecular materials at finite temperatures increase over time. Applicability limits of ab initio polymorph ranking that would be feasible at reasonable costs currently represent crystals of moderately sized molecules (less than 20 nonhydrogen atoms) and simple unit cells (containing rather only one symmetry-irreducible molecule). Extending the applicability range of the underlying first-principles methods to larger systems with a real-life significance, and enabling to perform such computations in a high-throughput regime represent additional challenges to be tackled in computational chemistry. This work presents a novel composite method that combines the computational efficiency of density-functional tight-binding (DFTB) methods with the accuracy of density-functional theory (DFT). Being rooted in the quasi-harmonic approximation, it uses a cheap method to perform all of the costly scans of how static and dynamic characteristics of the crystal vary with respect to its volume. Such data are subsequently corrected to agree with a higher-level model, which must be evaluated only at a single volume of the crystal. It thus enables predictions of structural, cohesive, and thermodynamic properties of complex molecular materials, such as pharmaceuticals or organic semiconductors, at a fraction of the original computational cost. As the composite model retains the solid physical background, it suffers from a minimum accuracy deterioration compared to the full treatment with the costly approach. The novel methodology is demonstrated to provide consistent results for the structural and thermodynamic properties of real-life molecular crystals and their polymorph ranking.

2.
Phys Chem Chem Phys ; 24(42): 25904-25917, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36260017

RESUMEN

Carboxylic acids of the Krebs cycle possess invaluable biochemical significance. Still, there are severe gaps in the availability of thermodynamic and crystallographic data, as well as ambiguities prevailing in the literature on the thermodynamic characterization and polymorph ranking. Providing an unambiguous description of the structure, thermodynamics and polymorphism of their neat crystalline phases requires a complex multidisciplinary approach. This work presents results of an extensive investigation of the structural anisotropy of the thermal expansion and local dynamics within these crystals, obtained from a beneficial cooperation of NMR crystallography and ab initio calculations of non-covalent interactions. The observed structural anisotropy and spin-lattice relaxation times are traced to large spatial variations in the strength of molecular interactions in the crystal lattice, especially in the orientation of the hydrogen bonds. A completely resolved crystal structure for oxaloacetic acid is reported for the first time. Thanks to multi-instrumental calorimetric effort, this work clarifies phase behavior, determines third-law entropies of the crystals, and states definitive polymorph ranking for succinic and fumaric acids. These thermodynamic observations are then interpreted in terms of first-principles quasi-harmonic calculations of cohesive properties. A sophisticated model capturing electronic, thermal, and configurational-entropic effects on the crystal structure approaches captures the subtle Gibbs energy differences governing polymorph ranking for succinic and fumaric acids, representing another success story of computational chemistry.


Asunto(s)
Ácidos Carboxílicos , Cristalización , Anisotropía , Termodinámica , Enlace de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...