Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38543209

RESUMEN

Radiofrequency ablation (RFA) of cancer induces an anti-tumor immunity, which is insufficient to prevent recurrences. In mice, RFA-intratumoral immunotherapy by granulocyte-macrophage colony-stimulating factor (GM-CSF) and Bacillus Calmette-Guerin resulted in complete metastases regression. Infectious risk in human needs replacement of live vaccines. Intratumoral purified protein derivatives (PPD) have never been tested in digestive cancers, and the safety of intratumoral immunotherapy after RFA has not yet been validated in human models. We investigated the therapeutic efficacy of combined radiofrequency ablation (RFA) and intratumoral immunotherapy (ITI) using an immune-muco-adherent thermogel (IMT) in a mouse model of metastatic colorectal cancer (CRC) and the safety of this approach in a pig model. Intratumoral stability of the immunogel was assessed using magnetic resonance imaging (MRI) and bioluminescent imaging. Seventy-four CT26 tumor-bearing female BALB/c mice were treated with RFA either alone or in combination with intratumoral IMT. Regression of distant metastasis and survival were monitored for 60 days. Six pigs that received liver radiofrequency and intralesional IMT injections were followed for 15 days. Experimental gel embolisms were treated using an intravascular approach. Pertinent rheology of IMT was confirmed in tumors, by the signal stability during 3 days in MRI and 7 days in bioluminescence imaging. In mice, the abscopal effect of RFA-intratumoral immunotherapy resulted in regression of distant lesions completed at day 16 vs. a volume of 350 ± 99.3 mm3 in the RFA group at day 25 and a 10-fold survival rate at 60 days. In pigs, injection of immunogel in the liver RFA area was safe after volume adjustment without clinical, hematological, and liver biology disorder. Flow cytometry showed an early increase in CD3 TCRγδ+T cells at D7 (p < 0.05) and a late decrease in CD29+-CD8 T cells at D15 (p < 0.05), reflecting the inflammation status changes. Systemic GM-CSF release was not detectable. Experimental caval and pulmonary thermogel embolisms were treated by percutaneous catheterism and cold serum infusion. RFA-intratumoral immunotherapy as efficient and safe mini-invasive interventional oncology is able to improve ablative treatment of colorectal liver metastases.

2.
Pharmaceutics ; 15(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37111588

RESUMEN

This study describes the preparation, characterization, and influence of the enantiopure vs. racemic coformer on the physico-chemical properties of a pharmaceutical cocrystal. For that purpose, two new 1:1 cocrystals, namely lidocaine:dl-menthol and lidocaine:d-menthol, were prepared. The menthol racemate-based cocrystal was evaluated by means of X-ray diffraction, infrared spectroscopy, Raman, thermal analysis, and solubility experiments. The results were exhaustively compared with the first menthol-based pharmaceutical cocrystal, i.e., lidocaine:l-menthol, discovered in our group 12 years ago. Furthermore, the stable lidocaine/dl-menthol phase diagram has been screened, thoroughly evaluated, and compared to the enantiopure phase diagram. Thus, it has been proven that the racemic vs. enantiopure coformer leads to increased solubility and improved dissolution of lidocaine due to the low stable form induced by menthol molecular disorder in the lidocaine:dl-menthol cocrystal. To date, the 1:1 lidocaine:dl-menthol cocrystal is the third menthol-based pharmaceutical cocrystal, after the 1:1 lidocaine:l-menthol and the 1:2 lopinavir:l-menthol cocrystals reported in 2010 and 2022, respectively. Overall, this study shows promising potential for designing new materials with both improved characteristics and functional properties in the fields of pharmaceutical sciences and crystal engineering.

3.
J Sep Sci ; 46(6): e2200766, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36621867

RESUMEN

In this study, we discuss the origin of the slightly increased response of the charged aerosol detector when low-concentration polar drugs formulated with sodium chloride are analyzed by hydrophilic interaction liquid chromatography coupled to the charged aerosol detector. In the case of tromethamine mixed with saline solutions, we investigated several levels including the mobile phase, sample matrix, and detection. We show that the analysis of the rich-salted sample results in both interactions with the mobile phase modifiers and the stationary phase during the run time. With 150 mM NaCl as a compounding solution, a slight increase in the tromethamine peak area was observed (<5.5%). Our study suggests that chloride ions in excess sequentially interact firstly with the counterions from the organic modifiers and secondly with the analyte via the stationary phase and the contribution of hydrophilic interaction liquid chromatography retention mechanisms. Because of these effects, the hydrophilic interaction liquid chromatography-charged aerosol detector analysis of drugs in saline solutions requires particular attention, and a correction factor for quantitative purposes that accounts for formulation ions remains appropriate.


Asunto(s)
Cloruros , Trometamina , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Aerosoles/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Cloruro de Sodio
4.
Pharmaceutics ; 14(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36297475

RESUMEN

(S)-ketamine presents potential for the management of acute pain and, more specifically, for the prevention of pain associated with care. However, the administration route can be a source of pain and distress. In this context, a smart formulation of (S)-ketamine was designed for buccal administration. The combination of poloxamer 407 and sodium alginate enables increased contact with mucosa components (mucins) to improve the absorption of (S)-ketamine. In this study, rheological studies allowed us to define the concentration of P407 to obtain a gelling temperature around 32 °C. Mucoadhesion tests by the synergism method were carried out to determine the most suitable alginate among three grades and its quantity to optimize its mucoadhesive properties. Protanal LF 10/60 was found to be the most effective in achieving interaction with mucins in simulated saliva fluid. P407 and alginate concentrations were set to 16% and 0.1%. Then, the impact of P407 batches was also studied and significant batch-to-batch variability in rheological properties was observed. However, in vitro drug release studies demonstrated that this variability has no significant impact on the drug release profile. This optimized formulation has fast release, which provides potential clinical interest, particularly in emergencies.

5.
Talanta ; 238(Pt 2): 123050, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801907

RESUMEN

Tromethamine (TMM), often encountered in a final drug product, exhibits interesting chemical properties as a counter ion, buffer, or active ingredient. European and US pharmacopeias propose titration against hydrogen chloride for TMM assays. However, this method can be a hindrance when using drugs containing low concentrations of TMM in complex buffered formulations. Due to the lack of chromophores and the high hydrophilicity of TMM, we performed a simple and reliable hydrophilic interaction chromatography coupled with a charged aerosol detector (HILIC-CAD) separation approach as an alternative for TMM analysis. An amide stationary phase and a mobile phase consisting of a binary mixture of acetonitrile and 10 mM ammonium formate, pH 3 (80/20, V/V) were used. As the CAD response deeply depends on parameters such as stationary phases and pH buffer, we investigated their impact and explored the optimal signal conditions. Including TMM analogs such as tris(hydroxymethyl) nitromethane and 2-amino-2-ethyl-1,3-propanediol allowed us to select these parameters appropriately. The effects of the evaporation temperature, flow rate, and power function value (PFV) on the CAD signal response were also studied and optimized. The method was validated according to the ICH Q2 R1 guidelines. A linear response (mean R2 > 0.997) covering the range for low TMM concentrations (170-520 µg/mL) was achieved. Satisfactory intra-day and inter-day precisions were obtained with RSDs lower than 1.9% and 2.8%, respectively. The trueness ranged from 99.6% to 101.2%, and the LOD was found to be 1.1 µg/mL. The HILIC-CAD method has been applied to a sterile TMM solution for injection.


Asunto(s)
Trometamina , Aerosoles , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Interacciones Hidrofóbicas e Hidrofílicas
6.
Int J Pharm ; 610: 121213, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34678397

RESUMEN

(R)-CE3F4, a specific inhibitor of EPAC1 (exchange protein directly activated by cAMP type 1), has been demonstrated in vitro and in vivo to reduce hypertrophic signaling contributing to heart failure or to control arrhythmia and has shown promise as a drug candidate. However, (R)-CE3F4 exhibits poor solubility in aqueous media and has shown sensitivity to enzyme hydrolysis in plasma. To overcome these issues, the drug was entrapped in liposomes and lipid nanocapsules. Both systems considerably increased the drug apparent solubility in aqueous media. Among these nanocarriers, lipid nanocapsules offered significant protection in vitro against enzymatic degradation by increasing the (R)-CE3F4 apparent half-life from around 40 min to 6 h. Pharmacokinetics and biodistribution of (R)-CE3F4 radiolabeled or not were studied in healthy C57BL/6 mice. The non-encapsulated 3H-CE3F4 showed a very rapid distribution outside the blood compartment. Similar results were observed when using nanocarriers together with a fast dissociation of 3H-CE3F4 from nanocapsules simultaneously labeled with 14C. Thus, essential preclinical information on CE3F4 fate has been obtained, as well as the impact of its formulation using lipid-based nanocarriers.


Asunto(s)
Nanocápsulas , Animales , Lípidos , Liposomas , Ratones , Ratones Endogámicos C57BL , Distribución Tisular
7.
Artículo en Inglés | MEDLINE | ID: mdl-34666890

RESUMEN

The CE3F4 is an inhibitor of the type 1 exchange protein directly activated by cAMP (EPAC1), which is involved in numerous signaling pathways. The inhibition of EPAC1 shows promising results in vitro and in vivo in different cardiac pathological situations like hypertrophic signaling, contributing to heart failure, or arrhythmia. An HPLC-UV method with a simple and fast sample treatment allowed the quantification of (R)-CE3F4. Sample treatment consisted of simple protein precipitation with 50 µL of ethanol and 150 µL of acetonitrile for a 50 µL biological sample. Two wavelengths were used according to the origin of plasma (220 or 250 nm for human samples and 250 nm for murine samples). Accuracy profile was evaluated for both wavelengths, and the method was in agreement with the criteria given by the EMA in the guideline for bioanalytical method validation for human and mouse plasma samples. The run time was 12 min allowing the detection of the (R)-CE3F4 and a metabolite. This study further permitted understanding the behavior of CE3F4 in plasma by highlighting an important difference between humans and rodents on plasma metabolism and may impact future in vivo studies related to this molecule and translation of results between animal models and humans. Using paraoxon as a metabolism inhibitor was crucial for the stabilization of (R)-CE3F4 in murine samples. HPLC-UV and HPLC-MS/MS studies were conducted to confirm metabolite structure and consequently, the main metabolic pathway in murine plasma.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Quinolinas/sangre , Quinolinas/química , Animales , Recolección de Muestras de Sangre , Humanos , Límite de Detección , Modelos Lineales , Ratones , Paraoxon/química , Reproducibilidad de los Resultados
8.
Pharmaceutics ; 13(1)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477667

RESUMEN

Oral lichen planus (OLP) is an ongoing and chronic inflammatory disease affecting the mucous membrane of the oral cavity. Currently, the treatment of choice consists in the direct application into the buccal cavity of semisolid formulations containing a corticosteroid molecule to decrease inflammatory signs and symptoms. However, this administration route has shown various disadvantages limiting its clinical use and efficacy. Indeed, the frequency of application and the incorrect use of the preparation may lead to a poor efficacy and limit the treatment compliance. Furthermore, the saliva clearance and the mechanical stress present in the buccal cavity also involve a decrease in the mucosal exposure to the drug. In this context, the design of a new pharmaceutical formulation, containing a steroidal anti-inflammatory, mucoadhesive, sprayable and exhibiting a sustained and controlled release seems to be suitable to overcome the main limitations of the existing pharmaceutical dosage forms. The present work reports the formulation, optimization and evaluation of the mucoadhesive and release properties of a poloxamer 407 thermosensitive hydrogel containing a poorly water-soluble corticosteroid, dexamethasone acetate (DMA), threaded into hydroxypropyl-beta-cyclodextrin (HP-ß-CD) molecules. Firstly, physicochemical properties were assessed to ensure suitable complexation of DMA into HP-ß-CD cavities. Then, rheological properties, in the presence and absence of various mucoadhesive agents, were determined and optimized. The hydration ratio (0.218-0.191), the poloxamer 407 (15-17 wt%) percentage and liquid-cyclodextrin state were optimized as a function of the gelation transition temperature, viscoelastic behavior and dynamic flow viscosity. Deformation and resistance properties were evaluated in the presence of various mucoadhesive compounds, being the sodium alginate and xanthan gum the most suitable to improve adhesion and mucoadhesion properties. Xanthan gum was shown as the best agent prolonging the hydrogel retention time up to 45 min. Furthermore, xanthan gum has been found as a relevant polymer matrix controlling drug release by diffusion and swelling processes in order to achieve therapeutic concentration for prolonged periods of time.

9.
J Sep Sci ; 43(14): 2925-2935, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32384201

RESUMEN

Ascorbic acid is a powerful antioxidant compound involved in many biological functions, and a chronic deficiency is at the origin of scurvy disease. A simple, rapid, and cost-effective capillary electrophoresis method was developed for the separation and simultaneous quantification of ascorbic acid and the major degradation products: dehydroascorbic acid, furfural, and furoic acid. Systematic optimization of the conditions was performed that enabled baseline separation of the compounds in less than 10 min. In addition to simultaneous quantification of ascorbic acid alongside to the degradation products, stability studies demonstrated the possibility using capillary electrophoresis to separate and identify the major degradation products. Thus, high-resolution tandem mass spectrometry experiments were conducted in order to identify an unknown degradation product separated by capillary electrophoresis and significantly present in degraded samples. Comparison of mass spectrometry data and capillary electrophoresis electropherograms allowed to identify unambiguously trihydroxy-keto-valeraldehyde. Finally, capillary electrophoresis was successfully applied to evaluate the composition of different pharmaceutical preparation of ascorbic acid. Results showed the excellent performance of the capillary electrophoresis method due to the separation of excipients from the compounds of interest, which demonstrated the relevance of using an electrophoretic separation in order to perform comprehensive stability studies of ascorbic acid.


Asunto(s)
Ácido Ascórbico/análisis , Electroforesis Capilar , Espectrometría de Masas en Tándem
10.
Cancer Lett ; 432: 103-111, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-29883750

RESUMEN

In this study, we investigated the anticancer efficacy of pegylated liposomes containing 6BrCaQ, an hsp90 inhibitor derived from novobiocin. 6BrCaQ has been previously identified as the most potent compound in a series of quinoleic novobiocin analogs but is poorly water-soluble. We investigated, for the first time, the anti-proliferative effects of this drug in vivo in an orthotopic breast cancer model (MDA-MB-231 luc) using pegylated liposomes to allow its administration. Hsp90, hsp70 and hsp27 protein and mRNA expressions were not strongly affected after treatment meaning it did not induce a heat shock response often associated with resistance and poor prognosis. Liposomal delivery of 6BrCaQ retarded tumor growth at a low dose (1 mg/kg, injected once a week for 4 weeks). Histological analysis of tumors revealed necrosis and a lower proportion of proliferative cells in treated mice indicating that this drug has potential for breast cancer therapy when encapsulated in liposomes.


Asunto(s)
Antineoplásicos/farmacología , Liposomas/administración & dosificación , Quinolonas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Apoptosis , Ciclo Celular , Proliferación Celular , Femenino , Humanos , Liposomas/química , Ratones , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Artículo en Inglés | MEDLINE | ID: mdl-28131025

RESUMEN

A new analytical method was developed for the routine Therapeutic Drug Monitoring of 8 antifungals compounds in 50µL of plasma: isavuconazole (ISZ), voriconazole (VRZ), posaconazole (PSZ), fluconazole (FCZ), caspofungin (CSF), flucytosine (5FC), itraconazole (ITZ) and its metabolite OH-itraconazole (OH-ITZ). After adding 50µL of the internal standard, which consisted in a mixture of the deuterated isotopes of the quantified compounds, the sample treatment consisted in a simple protein precipitation with 400µL of acetonitrile. Five microliters of the supernatant were directly injected into the chromatographic system. The chromatographic separation was performed with a Waters C18-BEH column and a mobile phase consisting in a mixture of water and acetonitrile, both containing 0.1% of formic acid. The total run time was 3min and the detection of the analytes was performed by electrospray ionization in a positive mode using selected reaction monitoring. Intra and inter-day precision and inaccuracy were <15% over the calibration ranges that were determined according to their clinical relevance: 0.20-20.0mg/L for ISZ, VRZ, PSZ, ITZ, and OH-ITZ; 0.50-50.0mg/L for FCZ and CSF; 2.00-200mg/L for 5FC. This simple and fast method was found suitable for routine therapeutic drug monitoring.


Asunto(s)
Antifúngicos/sangre , Cromatografía Líquida de Alta Presión/métodos , Monitoreo de Drogas/métodos , Nitrilos/sangre , Piridinas/sangre , Espectrometría de Masas en Tándem/métodos , Triazoles/sangre , Humanos , Modelos Lineales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...