Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675052

RESUMEN

Complete spinal cord injury causes an irreversible disruption in the central nervous system, leading to motor, sensory, and autonomic function loss, and a secondary injury that constitutes a physical barrier preventing tissue repair. Tissue engineering scaffolds are presented as a permissive platform for cell migration and the reconnection of spared tissue. Iodine-doped plasma pyrrole polymer (pPPy-I), a neuroprotective material, was applied to polylactic acid (PLA) fibers and implanted in a rat complete spinal cord transection injury model to evaluate whether the resulting composite implants provided structural and functional recovery, using magnetic resonance (MR) imaging, diffusion tensor imaging and tractography, magnetic resonance spectroscopy, locomotion analysis, histology, and immunofluorescence. In vivo, MR studies evidenced a tissue response to the implant, demonstrating that the fibrillar composite scaffold moderated the structural effects of secondary damage by providing mechanical stability to the lesion core, tissue reconstruction, and significant motor recovery. Histologic analyses demonstrated that the composite scaffold provided a permissive environment for cell attachment and neural tissue guidance over the fibers, reducing cyst formation. These results supply evidence that pPPy-I enhanced the properties of PLA fibrillar scaffolds as a promising treatment for spinal cord injury recovery.

2.
Chem Commun (Camb) ; 60(38): 5062-5065, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38634835

RESUMEN

This study introduces a paradigm-shifting approach to optimize mitochondrial targeting. Employing a new fluorescent probe strategy, we unravel a combined influence of both Nernst potential (Ψ) and partitioning (P) contributions. Through the synthesis of new benz[e]indolinium-derived probes, our findings redefine the landscape of mitochondrial localization by optimizing the efficacy of mitochondrial probe retention in primary cortical neurons undergoing normoxia and oxygen-glucose deprivation. This methodology not only advances our understanding of subcellular dynamics, but also holds promise for transformative applications in biomedical research and therapeutic development.


Asunto(s)
Colorantes Fluorescentes , Mitocondrias , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Mitocondrias/metabolismo , Animales , Neuronas/metabolismo , Estructura Molecular , Imagen Óptica , Indoles/química
3.
Curr Issues Mol Biol ; 45(9): 7476-7491, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37754256

RESUMEN

Traumatic spinal cord injury (SCI) causes irreversible damage leading to incapacity. Molecular mechanisms underlying SCI damage are not fully understood, preventing the development of novel therapies. Tamoxifen (TMX) has emerged as a promising therapy. Our aim was to identify transcriptome changes in the acute phase of SCI and the effect of Tamoxifen on those changes in a rat model of SCI. Four groups were considered: (1) Non-injured without TMX (Sham/TMX-), (2) Non-injured with TMX (Sham/TMX+), (3) injured without TMX (SCI/TMX-), and (4) injured with TMX (SCI/TMX+). Tamoxifen was administered intraperitoneally 30 min after injury, and spinal cord tissues were collected 24 h after injury. Clariom S Assays Array was used for transcriptome analysis. After comparing Sham/TMX- versus SCI/TMX-, 708 genes showed differential expression. The enriched pathways were the SCI pathway and pathways related to the inflammatory response. When comparing SCI/TMX- versus SCI/TMX+, only 30 genes showed differential expression, with no pathways enriched. Our results showed differential expression of genes related to the inflammatory response after SCI, and Tamoxifen seems to regulate gene expression changes in Ccr2 and Mmp12. Our study contributes data regarding the potential value of tamoxifen as a therapeutic resource for traumatic SCI during the acute phase.

4.
Cells ; 12(10)2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37408199

RESUMEN

Neuroinflammation is a unifying factor among all acute central nervous system (CNS) injuries and chronic neurodegenerative disorders. Here, we used immortalized microglial (IMG) cells and primary microglia (PMg) to understand the roles of the GTPase Ras homolog gene family member A (RhoA) and its downstream targets Rho-associated coiled-coil-containing protein kinases 1 and 2 (ROCK1 and ROCK2) in neuroinflammation. We used a pan-kinase inhibitor (Y27632) and a ROCK1- and ROCK2-specific inhibitor (RKI1447) to mitigate a lipopolysaccharide (LPS) challenge. In both the IMG cells and PMg, each drug significantly inhibited pro-inflammatory protein production detected in media (TNF-α, IL-6, KC/GRO, and IL-12p70). In the IMG cells, this resulted from the inhibition of NF-κB nuclear translocation and the blocking of neuroinflammatory gene transcription (iNOS, TNF-α, and IL-6). Additionally, we demonstrated the ability of both compounds to block the dephosphorylation and activation of cofilin. In the IMG cells, RhoA activation with Nogo-P4 or narciclasine (Narc) exacerbated the inflammatory response to the LPS challenge. We utilized a siRNA approach to differentiate ROCK1 and ROCK2 activity during the LPS challenges and showed that the blockade of both proteins may mediate the anti-inflammatory effects of Y27632 and RKI1447. Using previously published data, we show that genes in the RhoA/ROCK signaling cascade are highly upregulated in the neurodegenerative microglia (MGnD) from APP/PS-1 transgenic Alzheimer's disease (AD) mice. In addition to illuminating the specific roles of RhoA/ROCK signaling in neuroinflammation, we demonstrate the utility of using IMG cells as a model for primary microglia in cellular studies.


Asunto(s)
Microglía , Factor de Necrosis Tumoral alfa , Ratones , Animales , Microglía/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Enfermedades Neuroinflamatorias , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Ratones Transgénicos
5.
Cell Death Discov ; 9(1): 272, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507361

RESUMEN

Neural progenitor cells (NPCs) of the subventricular zone proliferate in response to ischemic stroke in the adult mouse brain. Newly generated cells have been considered to influence recovery following a stroke. However, the mechanism underlying such protection is a matter of active study since it has been thought that proliferating NPCs mediate their protective effects by secreting soluble factors that promote recovery rather than neuronal replacement in the ischemic penumbra. We tested the hypothesis that this mechanism is mediated by the secretion of multimolecular complexes in extracellular vesicles (EVs). We found that the molecular influence of oxygen and glucose-deprived (OGD) NPCs-derived EVs is very limited in improving overt neurological alterations caused by stroke compared to our recently reported astrocyte-derived EVs. However, when we inhibited the ischemia-triggered proliferation of NPCs with the chronic administration of the DNA synthesis inhibitor Ara-C, the effect of NPC-derived EVs became evident, suggesting that the endogenous protection exerted by the proliferation of NPC is mainly carried out through a mechanism that involves the intercellular communication mediated by EVs. We analyzed the proteomic content of NPC-derived EVs cargo with label-free relative abundance mass spectrometry and identified several molecular mediators of neuronal recovery within these vesicles. Our findings indicate that NPC-derived EVs are protective against the ischemic cascade activated by stroke and, thus, hold significant therapeutic potential.

6.
J Neurochem ; 166(1): 87-106, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37328918

RESUMEN

Ischemic stroke is a leading cause of disability worldwide. There is no simple treatment to alleviate ischemic brain injury, as thrombolytic therapy is applicable within a narrow time window. During the last years, the ketogenic diet (KD) and the exogenous administration of the ketone body ß-hydroxybutyrate (BHB) have been proposed as therapeutic tools for acute neurological disorders and both can reduce ischemic brain injury. However, the mechanisms involved are not completely clear. We have previously shown that the D enantiomer of BHB stimulates the autophagic flux in cultured neurons exposed to glucose deprivation (GD) and in the brain of hypoglycemic rats. Here, we have investigated the effect of the systemic administration of D-BHB, followed by its continuous infusion after middle cerebral artery occlusion (MCAO), on the autophagy-lysosomal pathway and the activation of the unfolded protein response (UPR). Results show for the first time that the protective effect of BHB against MCAO injury is enantiomer selective as only D-BHB, the physiologic enantiomer of BHB, significantly reduced brain injury. D-BHB treatment prevented the cleavage of the lysosomal membrane protein LAMP2 and stimulated the autophagic flux in the ischemic core and the penumbra. In addition, D-BHB notably reduced the activation of the PERK/eIF2α/ATF4 pathway of the UPR and inhibited IRE1α phosphorylation. L-BHB showed no significant effect relative to ischemic animals. In cortical cultures under GD, D-BHB prevented LAMP2 cleavage and decreased lysosomal number. It also abated the activation of the PERK/eIF2α/ATF4 pathway, partially sustained protein synthesis, and reduced pIRE1α. In contrast, L-BHB showed no significant effects. Results suggest that protection elicited by D-BHB treatment post-ischemia prevents lysosomal rupture allowing functional autophagy, preventing the loss of proteostasis and UPR activation.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular , Ratas , Animales , Cuerpos Cetónicos/farmacología , Cuerpos Cetónicos/metabolismo , Endorribonucleasas/farmacología , Proteínas Serina-Treonina Quinasas , Estrés del Retículo Endoplásmico , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Glucosa/metabolismo , Autofagia , Infarto de la Arteria Cerebral Media , Modelos Teóricos , Accidente Cerebrovascular/tratamiento farmacológico
7.
J Physiol ; 601(9): 1655-1673, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36625071

RESUMEN

The Transient Receptor Potential Vanilloid 4 (TRPV4) channel has been shown to function in many physiological and pathophysiological processes. Despite abundant information on its importance in physiology, very few endogenous agonists for this channel have been described, and very few underlying mechanisms for its activation have been clarified. TRPV4 is expressed by several types of cells, such as vascular endothelial, and skin and lung epithelial cells, where it plays pivotal roles in their function. In the present study, we show that TRPV4 is activated by lysophosphatidic acid (LPA) in both endogenous and heterologous expression systems, pinpointing this molecule as one of the few known endogenous agonists for TRPV4. Importantly, LPA is a bioactive glycerophospholipid, relevant in several physiological conditions, including inflammation and vascular function, where TRPV4 has also been found to be essential. Here we also provide mechanistic details of the activation of TRPV4 by LPA and another glycerophospholipid, lysophosphatidylcholine (LPC), and show that LPA directly interacts with both the N- and C-terminal regions of TRPV4 to activate this channel. Moreover, we show that LPC activates TRPV4 by producing an open state with a different single-channel conductance to that observed with LPA. Our data suggest that the activation of TRPV4 can be finely tuned in response to different endogenous lipids, highlighting this phenomenon as a regulator of cell and organismal physiology. KEY POINTS: The Transient Receptor Potential Vaniloid (TRPV) 4 ion channel is a widely distributed protein with important roles in normal and disease physiology for which few endogenous ligands are known. TRPV4 is activated by a bioactive lipid, lysophosphatidic acid (LPA) 18:1, in a dose-dependent manner, in both a primary and a heterologous expression system. Activation of TRPV4 by LPA18:1 requires residues in the N- and C-termini of the ion channel. Single-channel recordings show that TRPV4 is activated with a decreased current amplitude (conductance) in the presence of lysophosphatidylcholine (LPC) 18:1, while LPA18:1 and GSK101 activate the channel with a larger single-channel amplitude. Distinct single-channel amplitudes produced by LPA18:1 and LPC18:1 could differentially modulate the responses of the cells expressing TRPV4 under different physiological conditions.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Canales Catiónicos TRPV/metabolismo , Lisofosfatidilcolinas/farmacología , Lisofosfolípidos/farmacología
8.
Mol Ther ; 30(2): 798-815, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34563674

RESUMEN

Spontaneous recovery after a stroke accounts for a significant part of the neurological recovery in patients. However limited, the spontaneous recovery is mechanistically driven by axonal restorative processes for which several molecular cues have been previously described. We report the acceleration of spontaneous recovery in a preclinical model of ischemia/reperfusion in rats via a single intracerebroventricular administration of extracellular vesicles released from primary cortical astrocytes. We used magnetic resonance imaging and confocal and multiphoton microscopy to correlate the structural remodeling of the corpus callosum and striatocortical circuits with neurological performance during 21 days. We also evaluated the functionality of the corpus callosum by repetitive recordings of compound action potentials to show that the recovery facilitated by astrocytic extracellular vesicles was both anatomical and functional. Our data provide compelling evidence that astrocytes can hasten the basal recovery that naturally occurs post-stroke through the release of cellular mediators contained in extracellular vesicles.


Asunto(s)
Vesículas Extracelulares , Accidente Cerebrovascular , Animales , Astrocitos , Axones , Modelos Animales de Enfermedad , Humanos , Imagen por Resonancia Magnética , Ratas , Recuperación de la Función/fisiología , Accidente Cerebrovascular/patología
11.
ACS Pharmacol Transl Sci ; 2(2): 66-91, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31396586

RESUMEN

Traumatic brain injury (TBI) is becoming an increasing public health issue. With an annually estimated 1.7 million TBIs in the United States (U.S) and nearly 70 million worldwide, the injury, isolated or compounded with others, is a major cause of short- and long-term disability and mortality. This, along with no specific treatment, has made exploration of TBI therapies a priority of the health system. Age and sex differences create a spectrum of vulnerability to TBI, with highest prevalence among younger and older populations. Increased public interest in the long-term effects and prevention of TBI have recently reached peaks, with media attention bringing heightened awareness to sport and war related head injuries. Along with short-term issues, TBI can increase the likelihood for development of long-term neurodegenerative disorders. A growing body of literature supports the use of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptor (R) agonists, along with unimolecular combinations of these therapies, for their potent neurotrophic/neuroprotective activities across a variety of cellular and animal models of chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and acute cerebrovascular disorders (stroke). Mild or moderate TBI shares many of the hallmarks of these conditions; recent work provides evidence that use of these compounds is an effective strategy for its treatment. Safety and efficacy of many incretin-based therapies (GLP-1 and GIP) have been demonstrated in humans for the treatment of type 2 diabetes mellitus (T2DM), making these compounds ideal for rapid evaluation in clinical trials of mild and moderate TBI.

12.
Front Cell Neurosci ; 13: 270, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312121

RESUMEN

Vascular endothelial growth factor (VEGF) has long been connected to the development of tissue lesion following ischemic stroke. Contradictory findings either situate VEGF as a promoter of large infarct volumes or as a potential attenuator of damage due to its well documented neuroprotective capability. The core of this discrepancy mostly lies on the substantial number of pleiotropic functions driven by VEGF. Mechanistically, these effects are activated through several VEGF receptors for which various closely related ligands exist. Here, we tested in an experimental model of stroke how the differential activation of VEGF receptors 1 and 2 would modify functional and histological outcomes in the acute phase post-ischemia. We also assessed whether VEGF-mediated responses would involve the modulation of inflammatory mechanisms and how this trophic factor acted specifically on neuronal receptors. We produced ischemic infarcts in adult rats by transiently occluding the middle cerebral artery and induced the pharmacological inhibition of VEGF receptors by i.c.v. administration of the specific VEGFR2 inhibitor SU1498 and the pan-VEGFR blocker Axitinib. We evaluated the neurological performance of animals at 24 h following stroke and the occurrence of brain infarctions analyzed at the gross metabolic and neuronal viability levels. We also assessed the induction of peripheral pro- and anti-inflammatory cytokines in the cerebrospinal fluid and blood and assessed the polarization of activated microglia. Finally, we studied the direct involvement of cortical neuronal receptors for VEGF with in vitro assays of excitotoxic damage. Preferential VEGFR1 activation by the endogenous ligand promotes neuronal protection and prevents the presentation of large volume infarcts that highly correlate with neurological performance, while the concomitant activation of VEGFR2 reduces this effect, even in the presence of exogenous ligand. This process partially involves the polarization of microglia to the state M2. At the cellular level, neurons also responded better to the preferential activation of VEGFR1 when challenged to N-methyl-D-aspartate-induced excitotoxicity. Endogenous activation of VEGFR2 hinders the neuroprotective mechanisms mediated by the activation of VEGFR1. The selective modulation of these concurrent processes might enable the development of therapeutic approaches that target specific VEGFR1-mediated signaling during the acute phase post-stroke.

13.
Channels (Austin) ; 13(1): 207-226, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31184289

RESUMEN

Ion channels display conformational changes in response to binding of their agonists and antagonists. The study of the relationships between the structure and the function of these proteins has witnessed considerable advances in the last two decades using a combination of techniques, which include electrophysiology, optical approaches (i.e. patch clamp fluorometry, incorporation of non-canonic amino acids, etc.), molecular biology (mutations in different regions of ion channels to determine their role in function) and those that have permitted the resolution of their structures in detail (X-ray crystallography and cryo-electron microscopy). The possibility of making correlations among structural components and functional traits in ion channels has allowed for more refined conclusions on how these proteins work at the molecular level. With the cloning and description of the family of Transient Receptor Potential (TRP) channels, our understanding of several sensory-related processes has also greatly moved forward. The response of these proteins to several agonists, their regulation by signaling pathways as well as by protein-protein and lipid-protein interactions and, in some cases, their biophysical characteristics have been studied thoroughly and, recently, with the resolution of their structures, the field has experienced a new boom. This review article focuses on the conformational changes in the pores, concentrating on some members of the TRP family of ion channels (TRPV and TRPA subfamilies) that result in changes in their single-channel conductances, a phenomenon that may lead to fine-tuning the electrical response to a given agonist in a cell.


Asunto(s)
Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Humanos , Familia de Multigenes , Conformación Proteica , Transducción de Señal , Canales de Potencial de Receptor Transitorio/genética
14.
Front Cell Dev Biol ; 7: 356, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998717

RESUMEN

Traumatic brain injury (TBI) is a commonly occurring injury in sports, victims of motor vehicle accidents, and falls. TBI has become a pressing public health concern with no specific therapeutic treatment. Mild TBI (mTBI), which accounts for approximately 90% of all TBI cases, may frequently lead to long-lasting cognitive, behavioral, and emotional impairments. The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are gastrointestinal hormones that induce glucose-dependent insulin secretion, promote ß-cell proliferation, and enhance resistance to apoptosis. GLP-1 mimetics are marketed as treatments for type 2 diabetes mellitus (T2DM) and are well tolerated. Both GLP-1 and GIP mimetics have shown neuroprotective properties in animal models of Parkinson's and Alzheimer's disease. The aim of this study is to evaluate the potential neuroprotective effects of liraglutide, a GLP-1 analog, and twincretin, a dual GLP-1R/GIPR agonist, in a murine mTBI model. First, we subjected mice to mTBI using a weight-drop device and, thereafter, administered liraglutide or twincretin as a 7-day regimen of subcutaneous (s.c.) injections. We then investigated the effects of these drugs on mTBI-induced cognitive impairments, neurodegeneration, and neuroinflammation. Finally, we assessed their effects on neuroprotective proteins expression that are downstream to GLP-1R/GIPR activation; specifically, PI3K and PKA phosphorylation. Both drugs ameliorated mTBI-induced cognitive impairments evaluated by the novel object recognition (NOR) and the Y-maze paradigms in which neither anxiety nor locomotor activity were confounds, as the latter were unaffected by either mTBI or drugs. Additionally, both drugs significantly mitigated mTBI-induced neurodegeneration and neuroinflammation, as quantified by immunohistochemical staining with Fluoro-Jade/anti-NeuN and anti-Iba-1 antibodies, respectively. mTBI challenge significantly decreased PKA phosphorylation levels in ipsilateral cortex, which was mitigated by both drugs. However, PI3K phosphorylation was not affected by mTBI. These findings offer a new potential therapeutic approach to treat mTBI, and support further investigation of the neuroprotective effects and mechanism of action of incretin-based therapies for neurological disorders.

15.
Rev Neurosci ; 29(1): 1-20, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28873068

RESUMEN

The dentate gyrus of the hippocampus is a plastic structure where adult neurogenesis constitutively occurs. Cell components of the neurogenic niche are source of paracrine as well as membrane-bound factors such as Notch, Bone Morphogenetic Proteins, Wnts, Sonic Hedgehog, cytokines, and growth factors that regulate adult hippocampal neurogenesis and cell fate decision. The integration and coordinated action of multiple extrinsic and intrinsic cues drive a continuous decision process: if adult neural stem cells remain quiescent or proliferate, if they take a neuronal or a glial lineage, and if new cells proliferate, undergo apoptotic death, or survive. The proper balance in the molecular milieu of this neurogenic niche leads to the production of neurons in a higher rate as that of astrocytes. But this rate changes in face of microenvironment modifications as those driven by physical exercise or with neuroinflammation. In this work, we first review the cellular and molecular components of the subgranular zone, focusing on the molecules, active signaling pathways and genetic programs that maintain quiescence, induce proliferation, or promote differentiation. We then summarize the evidence regarding the role of neuroinflammation and physical exercise in the modulation of adult hippocampal neurogenesis with emphasis on the activation of progression from adult neural stem cells to lineage-committed progenitors to their progeny mainly in murine models.


Asunto(s)
Ejercicio Físico , Hipocampo/citología , Inflamación/patología , Células-Madre Neurales/fisiología , Neuronas/fisiología , Animales , Diferenciación Celular , Humanos , Inflamación/inducido químicamente , Neurogénesis/fisiología
16.
Mediators Inflamm ; 2017: 4792932, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28572712

RESUMEN

Spinal cord injury (SCI) is an incapacitating condition that affects motor, sensory, and autonomic functions. Since 1990, the only treatment administered in the acute phase of SCI has been methylprednisolone (MP), a synthetic corticosteroid that has anti-inflammatory effects; however, its efficacy remains controversial. Although MP has been thought to help in the resolution of edema, there are no scientific grounds to support this assertion. Aquaporin 4 (AQP4), the most abundant component of water channels in the CNS, participates in the formation and elimination of edema, but it is not clear whether the modulation of AQP4 expression by MP plays any role in the physiopathology of SCI. We studied the functional expression of AQP4 modulated by MP following SCI in an experimental model in rats along with the associated changes in the permeability of the blood-spinal cord barrier. We analyzed these effects in male and female rats and found that SCI increased AQP4 expression in the spinal cord white matter and that MP diminished such increase to baseline levels. Moreover, MP increased the extravasation of plasma components after SCI and enhanced tissue swelling and edema. Our results lend scientific support to the increasing motion to avoid MP treatment after SCI.


Asunto(s)
Acuaporina 4/metabolismo , Edema/inducido químicamente , Edema/metabolismo , Metilprednisolona/administración & dosificación , Traumatismos de la Médula Espinal/tratamiento farmacológico , Corticoesteroides/administración & dosificación , Animales , Modelos Animales de Enfermedad , Edema/complicaciones , Femenino , Regulación de la Expresión Génica , Hemorragia , Masculino , Microscopía Confocal , Ratas , Ratas Long-Evans , Médula Espinal/patología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo
17.
Sci Signal ; 10(473)2017 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-28377412

RESUMEN

Brain injury induces a peripheral acute cytokine response that directs the transmigration of leukocytes into the brain. Because this brain-to-peripheral immune communication affects patient recovery, understanding its regulation is important. Using a mouse model of inflammatory brain injury, we set out to find a soluble mediator for this phenomenon. We found that extracellular vesicles (EVs) shed from astrocytes in response to intracerebral injection of interleukin-1ß (IL-1ß) rapidly entered into peripheral circulation and promoted the transmigration of leukocytes through modulation of the peripheral acute cytokine response. Bioinformatic analysis of the protein and microRNA cargo of EVs identified peroxisome proliferator-activated receptor α (PPARα) as a primary molecular target of astrocyte-shed EVs. We confirmed in mice that astrocytic EVs promoted the transmigration of leukocytes into the brain by inhibiting PPARα, resulting in the increase of nuclear factor κB (NF-κB) activity that triggered the production of cytokines in liver. These findings expand our understanding of the mechanisms regulating communication between the brain and peripheral immune system and identify astrocytic EVs as a molecular regulator of the immunological response to inflammatory brain damage.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Mediadores de Inflamación/metabolismo , Leucocitos Mononucleares/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Encéfalo/efectos de los fármacos , Encéfalo/patología , Células Cultivadas , Ceramidas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Vesículas Extracelulares/ultraestructura , Interleucina-1beta/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica , Microscopía Fluorescente , Interferencia de ARN , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Migración Transcelular de la Célula/efectos de los fármacos , Migración Transcelular de la Célula/genética
18.
J Neurochem ; 136(1): 13-27, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26376102

RESUMEN

Neuronal survival depends on multiple factors that comprise a well-fueled energy metabolism, trophic input, clearance of toxic substances, appropriate redox environment, integrity of blood-brain barrier, suppression of programmed cell death pathways and cell cycle arrest. Disturbances of brain homeostasis lead to acute or chronic alterations that might ultimately cause neuronal death with consequent impairment of neurological function. Although we understand most of these processes well when they occur independently from one another, we still lack a clear grasp of the concerted cellular and molecular mechanisms activated upon neuronal damage that intervene in protecting damaged neurons from death. In this review, we summarize a handful of endogenously activated mechanisms that balance molecular cues so as to determine whether neurons recover from injury or die. We center our discussion on mechanisms that have been identified to participate in stroke, although we consider different scenarios of chronic neurodegeneration as well. We discuss two central processes that are involved in endogenous repair and that, when not regulated, could lead to tissue damage, namely, trophic support and neuroinflammation. We emphasize the need to construct integrated models of neuronal degeneration and survival that, in the end, converge in neuronal fate after injury. Under neurodegenerative conditions, endogenously activated mechanisms balance out molecular cues that determine whether neurons contend toxicity or die. Many processes involved in endogenous repair may as well lead to tissue damage depending on the strength of stimuli. Signaling mediated by trophic factors and neuroinflammation are examples of these processes as they regulate different mechanisms that mediate neuronal demise including necrosis, apoptosis, necroptosis, pyroptosis and autophagy. In this review, we discuss recent findings on balanced regulation and their involvement in neuronal death.


Asunto(s)
Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo , Supervivencia Celular/fisiología , Neuronas/metabolismo , Recuperación de la Función/fisiología , Animales , Autofagia/fisiología , Encéfalo/patología , Lesiones Encefálicas/patología , Muerte Celular/fisiología , Humanos , Neuronas/patología
19.
Front Cell Neurosci ; 8: 61, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24616665

RESUMEN

Motor neuron physiology and development depend on a continuous and tightly regulated trophic support from a variety of cellular sources. Trophic factors guide the generation and positioning of motor neurons during every stage of the developmental process. As well, they are involved in axon guidance and synapse formation. Even in the adult spinal cord an uninterrupted trophic input is required to maintain neuronal functioning and protection from noxious stimuli. Among the trophic factors that have been demonstrated to participate in motor neuron physiology are vascular endothelial growth factor (VEGF), glial-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) and insulin-like growth factor 1 (IGF-1). Upon binding to membrane receptors expressed in motor neurons or neighboring glia, these trophic factors activate intracellular signaling pathways that promote cell survival and have protective action on motor neurons, in both in vivo and in vitro models of neuronal degeneration. For these reasons these factors have been considered a promising therapeutic method for amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases, although their efficacy in human clinical trials have not yet shown the expected protection. In this minireview we summarize experimental data on the role of these trophic factors in motor neuron function and survival, as well as their mechanisms of action. We also briefly discuss the potential therapeutic use of the trophic factors and why these therapies may have not been yet successful in the clinical use.

20.
Neuropharmacology ; 82: 101-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24157492

RESUMEN

In the spinal cord neuronal activity is controlled by the balance between excitatory and inhibitory neurotransmission, mediated mainly by the neurotransmitters glutamate and GABA/glycine, respectively. Alterations of this equilibrium have been associated with spinal motor neuron hyperexcitability and degeneration, which can be induced by excitotoxicity or by decreasing inhibitory neurotransmission. Here we review the ventral horn neuronal network and the possible involvement of inhibitory circuits in the mechanisms of degeneration of motor neurons characteristic of amyotrophic lateral sclerosis (ALS). Whereas glutamate mediated excitotoxicity seems to be an important factor, recent experimental and histopathological evidence argue in favor of a decreased activity of the inhibitory circuits controlling motor neuron excitability, mainly the recurrent inhibition exerted by Renshaw cells. A decreased Renshaw cell activity may be caused by cell loss or by a reduction of its inhibitory action secondary to a decreased excitation from cholinergic interneurons. Ultimately, inhibitory failure by either mechanism might lead to motor neuron degeneration, and this suggests inhibitory circuits and Renshaw cells as pharmacologic targets for ALS treatment.


Asunto(s)
Enfermedad de la Neurona Motora/fisiopatología , Neuronas Motoras/fisiología , Degeneración Nerviosa/fisiopatología , Inhibición Neural/fisiología , Médula Espinal/fisiopatología , Animales , Células del Asta Anterior/fisiología , Humanos , Células de Renshaw/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...