Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Transl Oncol ; 5(4): 252-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22937177

RESUMEN

Oxidative stress participates in doxorubicin (Dx)-induced cardiotoxicity. The metal complex MnDPDP and its metabolite MnPLED possess SOD-mimetic activity, DPDP and PLED have, in addition, high affinity for iron. Mice were injected intravenously with MnDPDP, DPDP, or dexrazoxane (ICRF-187). Thirty minutes later, mice were killed, the left atria were hung in organ baths and electrically stimulated, saline or Dx was added, and the contractility was measured for 60 minutes. In parallel experiments, 10 µM MnDPDP or MnPLED was added directly into the organ bath. The effect of MnDPDP on antitumor activity of Dx against two human tumor xenografts (MX-1 and A2780) was investigated. The in vitro cytotoxic activity was studied by co-incubating A2780 cells with MnDPDP, DPDP, and/or Dx. Dx caused a marked reduction in contractile force. In vivo treatment with MnDPDP and ICRF-187 attenuated the negative effect of Dx. When added directly into the bath, MnDPDP did not protect, whereas MnPLED attenuated the Dx effect by approximately 50%. MnDPDP or ICRF-187 did not interfere negatively with the anti-tumor activity of Dx, either in vivo or in vitro. Micromolar concentrations of DPDP but not MnDPDP displayed an in vitro cytotoxic activity against A2780 cells. The present results show that MnDPDP, after being metabolized to MnPLED, protects against acute Dx cardiotoxicity. Both in vivo and in vitro experiments show that cardioprotection takes place without interfering negatively with the anticancer activity of Dx. Furthermore, the results suggest that the previously described cytotoxic in vivo activity of MnDPDP is an inherent property of DPDP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA