Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes Care ; 44(6): 1254-1263, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33905343

RESUMEN

OBJECTIVE: To determine whether interrupting sitting with brief bouts of simple resistance activities (SRAs) at different frequencies improves postprandial glucose, insulin, and triglycerides in adults with medication-controlled type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: Participants (n = 23, 10 of whom were female, with mean ± SD age 62 ± 8 years and BMI 32.7 ± 3.5 kg · m-2) completed a three-armed randomized crossover trial (6- to 14-day washout): sitting uninterrupted for 7 h (SIT), sitting with 3-min SRAs (half squats, calf raises, gluteal contractions, and knee raises) every 30 min (SRA3), and sitting with 6-min SRAs every 60 min (SRA6). Net incremental areas under the curve (iAUCnet) for glucose, insulin, and triglycerides were compared between conditions. RESULTS: Glucose and insulin 7-h iAUCnet were attenuated significantly during SRA6 (glucose 17.0 mmol · h · L-1, 95% CI 12.5, 21.4; insulin 1,229 pmol · h · L-1, 95% CI 982, 1,538) in comparison with SIT (glucose 21.4 mmol · h · L-1, 95% CI 16.9, 25.8; insulin 1,411 pmol · h · L-1, 95% CI 1,128, 1,767; P < 0.05) and in comparison with SRA3 (for glucose only) (22.1 mmol · h · L-1, 95% CI 17.7, 26.6; P = 0.01) No significant differences in glucose or insulin iAUCnet were observed in comparison of SRA3 and SIT. There was no statistically significant effect of condition on triglyceride iAUCnet. CONCLUSIONS: In adults with medication-controlled T2D, interrupting prolonged sitting with 6-min SRAs every 60 min reduced postprandial glucose and insulin responses. Other frequencies of interruptions and potential longer-term benefits require examination to clarify clinical relevance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Adulto , Anciano , Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Humanos , Insulina , Persona de Mediana Edad , Periodo Posprandial , Caminata
2.
Med Sci Sports Exerc ; 53(3): 479-486, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32925494

RESUMEN

PURPOSE: In healthy adults, the impairment of vascular function associated with prolonged sitting can be mitigated with intermittent brief bouts of activity. It is unknown whether these benefits extend to women with polycystic ovary syndrome (PCOS), in whom vascular function is typically impaired and sitting time is high. We examined the acute effect of regularly interrupting sitting time with brief simple resistance activities (SRA) on vascular function in PCOS. METHODS: In a randomized crossover trial, 13 physically inactive women with PCOS (18-45 yr) completed two 3.5-h conditions: 1) uninterrupted sitting (SIT) and 2) sitting interrupted by 3-min bouts of SRA every 30 min. Femoral artery flow-mediated dilation (FMD), resting shear rate, and resting blood flow were measured at 0, 1, and 3.5 h. RESULTS: Mean resting femoral shear rate, averaged across the 3.5 h, significantly increased in the SRA condition relative to the SIT condition (40.1 ± 6.1 vs 62.8 ± 6.1 s-1, P < 0.0001). In addition, mean resting blood flow also significantly increased across the 3.5 h for SRA relative to SIT (45.0 ± 9.8 vs 72.8 ± 9.9 mL·min-1, P < 0.0001). There were no differences between conditions in the temporal change in femoral artery FMD across 3.5 h (Ptime-condition > 0.05 for all). CONCLUSION: Frequently interrupting sitting with SRA acutely increased resting shear rate and blood flow in women with PCOS but did not alter FMD. With sedentary behavior increasing in prevalence, longer-term studies of similar interventions to reduce and break up sitting time are warranted.


Asunto(s)
Endotelio Vascular/fisiopatología , Síndrome del Ovario Poliquístico/fisiopatología , Entrenamiento de Fuerza/métodos , Sedestación , Adulto , Estudios Cruzados , Femenino , Arteria Femoral/fisiología , Hemorreología/fisiología , Humanos , Flujo Sanguíneo Regional , Conducta Sedentaria , Factores de Tiempo , Vasodilatación/fisiología
3.
Am J Physiol Heart Circ Physiol ; 320(1): H393-H403, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33164575

RESUMEN

In healthy and overweight/obese adults, interrupting prolonged sitting with activity bouts mitigates impairment in vascular function. However, it is unknown whether these benefits extend to those with type 2 diabetes (T2D), nor whether an optimal frequency of activity interruptions exist. We examined the acute effects on vascular function in T2D of interrupting prolonged sitting with simple resistance activities (SRA) at different frequencies. In a randomized crossover trial, 24 adults with T2D (35-70 yr) completed three 7-h conditions: 1) uninterrupted sitting (SIT), 2) sitting with 3-min bouts of SRA every 30 min (SRA3), and 3) sitting with 6 min bouts of SRA every 60 min (SRA6). Femoral artery flow-mediated dilation (FMD), resting shear rate, blood flow, and endothelin-1 were measured at 0, 1, 3.5, 4.5, and 6.5-7 h. Mean femoral artery FMD over 7 h was significantly higher in SRA3 (4.1 ± 0.3%) compared with SIT (3.7 ± 0.3%, P = 0.04) but not in SRA6. Mean resting femoral shear rate over 7 h was increased significantly for SRA3 (45.3 ± 4.1/s, P < 0.001) and SRA6 (46.2 ± 4.1/s, P < 0.001) relative to SIT (33.1 ± 4.1/s). Endothelin-1 concentrations were not statistically different between conditions. Interrupting sitting with activity breaks every 30 min, but not 60 min, significantly increased mean femoral artery FMD over 7 h, relative to SIT. Our findings suggest that more frequent and shorter breaks may be more beneficial than longer, less frequent breaks for vascular health in those with T2D.NEW & NOTEWORTHY This is the first trial to examine both the effects of interrupting prolonged sitting on vascular function in type 2 diabetes and the effects of the frequency and duration of interruptions. Brief, simple resistance activity bouts every 30 min, but not every 60 min, increased mean femoral artery flow-mediated dilation over 7 h, relative to uninterrupted sitting. With further supporting evidence, these initial findings can have important implications for cardiovascular health in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/terapia , Arteria Femoral/fisiopatología , Entrenamiento de Fuerza , Conducta Sedentaria , Sedestación , Vasodilatación , Adulto , Anciano , Estudios Cruzados , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/fisiopatología , Endotelina-1/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Flujo Sanguíneo Regional , Factores de Tiempo , Resultado del Tratamiento
4.
J Cell Biochem ; 87(4): 363-76, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12397596

RESUMEN

Protein tyrosine phosphatases (PTPs) are critical regulators of cellular phosphorylation functioning in processes such as cell growth, differentiation, and adhesion. Osteotesticular PTP (OST) is the only characterized member of this superfamily whose expression is regulated in osteoblasts and critical for their in vitro differentiation. Such evidence would suggest that this molecule is a key modulator of signaling events during osteogenesis, yet little is known about its genetic regulation. In an effort to examine the molecular mechanisms involved in the cellular regulation of OST, we have characterized its expression in MC3T3 osteoblasts during differentiation. Northern analysis revealed that murine OST mRNA is dramatically regulated during the preosteoblast to osteoblast progression, with predominant expression in differentiated and early mineralizing osteoblasts. This expression pattern is unique to this phosphatase since, in comparison, the structurally similar receptor PTP, LAR, and the intracellular PTP1B show little change during differentiation. Cell density contributes to this upregulated expression as confluent cultures display an increase in OST transcripts within 4 h post-plating. Transient transfection of the OST promoter in differentiating MC3T3 results in a significant increase in transcriptional activation from day 0 to day 5 of differentiation, similar in timing and intensity to the observed upregulation of the endogenous gene. This activation appears to be specific to osteoblasts, since progression to a myoblast phenotype results in no change in reporter gene activity. Culturing these preosteoblast cells in the absence of critical co-factors results in an inhibition of differentiation and leads to a delayed induction of OST transcripts as well as the attenuation of transcriptional activation. These results show that the murine OST gene is regulated at the transcriptional level in an osteoblast-specific, differentiation-dependent manner during the differentiation of MC3T3 osteoblasts. Future studies will help determine the essential regulatory elements within the OST-PTP promoter and the critical signaling pathways important in this regulation.


Asunto(s)
Regulación de la Expresión Génica , Osteoblastos/citología , Proteínas Tirosina Fosfatasas/biosíntesis , Proteínas Tirosina Fosfatasas/genética , Activación Transcripcional , Células 3T3 , Animales , Northern Blotting , Diferenciación Celular , Luciferasas/metabolismo , Ratones , Osteoblastos/metabolismo , Fenotipo , Plásmidos/metabolismo , Regiones Promotoras Genéticas , ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores , Factores de Tiempo , Transcripción Genética , Transfección , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...