Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biodegradation ; 7(3): 183-9, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8782390

RESUMEN

The ability of bacterial cultures to degrade diethanolamine under anoxic conditions with nitrate as an electron acceptor was investigated. A mixed culture capable of anaerobic degradation of diethanolamine was obtained from river sediments by enrichment culture. From this a single bacterial strain was isolated which could use diethanolamine, monoethanolamine, triethanolamine and N-methyl diethanolamine as its sole carbon and energy sources either aerobically or anaerobically. Growth on diethanolamine was faster in the absence of oxygen. The accumulation of possible metabolites in the culture medium was determined as was the ability to grow on certain putative intermediates in the degradation of diethanolamine. A possible pathway for the degradation of ethanolamines by this organism is suggested.


Asunto(s)
Bacterias/metabolismo , Etanolaminas/metabolismo , Nitratos/metabolismo , Anaerobiosis , Biodegradación Ambiental , Medios de Cultivo , Transporte de Electrón , Oxidación-Reducción
2.
Biotechnol Bioeng ; 30(1): 1-8, 1987 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18576576

RESUMEN

Environmental concern about sulphur dioxide emissions has led to the examination of the possibility of removing pyritic sulphur from coal prior to combustion during froth flotation, a routine method for coal cleaning at the pit-head. The bacterium Thiobacillus ferrooxidans was effective in leaching 80% and 63% -53 mum pyrite at 2% and 6% pulp density in shake flasks in 240 and 340 h, respectively.The natural floatability of pyrite was significantly reduced in the Hallimond tube following 2.5 min of conditioning in membrane-filtered bacterial liquor prior to flotation. The suppression effect was greatly enhanced in the presence of Thiobacillus ferrooxidans. A bacterial suspension in pH 2.0 distilled water showed 85% suppression, whereas in spent growth liquor this value was 95%. The optimum bacterial density was 3.25 x 10(10) cells/g pyrite in 230-ml distilled water (2% pulp density) in the Hallimond tube. The degree of suppression by the cells was related to particle size but not to pH or temperature. The sulphur content of a synthetic coal/pyrite mixture was reduced from 10.9 to 2.1% by flotation after bacterial preconditioning. It is postulated that pyrite removal in coals which are cleaned by froth flotation could be significantly reduced using a bacterial preconditioning stage with a short residence time of 2.5 min.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA