Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 1008725, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36777533

RESUMEN

Introduction: The soil houses a tremendous amount of micro-organisms, many of which are plant parasites and pathogens by feeding off plant roots for sustenance. Such root pathogens and parasites often rely on plant-secreted signaling molecules in the rhizosphere as host guidance cues. Here we describe the isolation and characterization of a chemoattractant of plant-parasitic root-knot nematodes (Meloidogyne incognita, RKN). Methods: The Super-growing Root (SR) culture, consisting of excised roots from the legume species Lotus corniculatus L., was found to strongly attract infective RKN juveniles and actively secrete chemoattractants into the liquid culture media. The chemo-attractant in the culture media supernatant was purified using hydrophobicity and anion exchange chromatography, and found to be enriched in carbohydrates. Results: Monosaccharide analyses suggest the chemo-attractant contains a wide array of sugars, but is enriched in arabinose, galactose and galacturonic acid. This purified chemoattractant was shown to contain pectin, specifically anti-rhamnogalacturonan-I and anti-arabinogalactan protein epitopes but not anti-homogalacturonan epitopes. More importantly, the arabinose and galactose sidechain groups were found to be essential for RKN-attracting activities. This chemo-attractant appears to be specific to M. incognita, as it wasn't effective in attracting other Meloidogyne species nor Caenorhabditis elegans. Discussion: This is the first report to identify the nematode attractant purified from root exudate of L corniculatus L. Our findings re-enforce pectic carbohydrates as important chemicals mediating micro-organism chemotaxis in the soil, and also highlight the unexpected utilities of the SR culture system in root pathogen research.

2.
Plant Biotechnol (Tokyo) ; 38(1): 157-159, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-34177336

RESUMEN

Root-knot nematodes (RKNs, genus Meloidogyne) are a class of plant parasites that seek out and infect the roots of many plant species. The identification of RKN attractants can be used in agriculture in conjunction with nematode-trapping technology to redirect RKN movements and eventually reduce their prevalence in the field. Here, we discovered that some commercial silica gels can attract nematodes. Silica gels that attract nematodes contain calcium sulfate. Calcium sulfate and calcium carbonate showed strong nematode attraction properties. When plant seeds were surrounded by calcium sulfate or calcium carbonate, nematodes were not attracted to the plant seeds. We propose that calcium sulfate and calcium carbonate can be used in agriculture as a novel material to trap RKN.

3.
Mol Plant ; 13(4): 658-665, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31891776

RESUMEN

Root-knot nematodes (RKNs; genus Meloidogyne) are a class of plant parasites that infect the roots of many plant species. It is believed that RKNs target certain signaling molecules derived from plants to locate their hosts; however, currently, no plant compound has been unambiguously identified as a universal RKN attractant. To address this question, we screened a chemical library of synthetic compounds for Meloidogyne incognita attractants. The breakdown product of aminopropylamino-anthraquinone, 1,3-diaminopropane, as well as its related compounds, putrescine and cadaverine, were found to attract M. incognita. After examining various polyamines, M. incognita were found to be attracted specifically by natural compounds that possess three to five methylene groups between two terminal amino groups. Using cryo-TOF-SIMS/SEM, cadaverine was indeed detected in soybean root cortex cells and the surrounding rhizosphere, establishing a chemical gradient. In addition to cadaverine, putrescine and 1,3-diaminopropane were also detected in root exudate by HPLC-MS/MS. Furthermore, exogenously applied cadaverine is sufficient to enhance M. incognita infection of Arabidopsis seedlings. These results suggest that M. incognita is likely attracted by polyamines to locate the appropriate host plants, and the naturally occurring polyamines have potential applications in agriculture in developing protection strategies for crops from RKN infection.


Asunto(s)
Quimiotaxis/efectos de los fármacos , Raíces de Plantas/parasitología , Poliaminas/farmacología , Tylenchoidea/fisiología , Animales , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Exudados de Plantas/química , Raíces de Plantas/química , Plantas/química , Plantas/parasitología , Poliaminas/química , Rizosfera , Plantones/parasitología , Tylenchoidea/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA