Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Water Res ; 185: 116269, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32798893

RESUMEN

An improved understanding of the diversity and composition of microbial communities carrying antibiotic resistance genes (ARGs) and virulence genes (VGs) in aquifers recharged with stormwater is essential to comprehend potential human health risks from water reuse. A high-throughput functional gene array was used to study the prevalence of ARGs and VGs in aquifer biofilms (n = 27) taken from three boreholes over three months. Bacterial genera annotated as opportunistic pathogens such as Aeromonas, Burkholderia, Pseudomonas, Shewanella, and Vibrio were ubiquitous and abundant in all biofilms. Bacteria from clinically relevant genera, Campylobacter, Enterobacter, Klebsiella, Mycobacterium, Mycoplasma, and Salmonella were detected in biofilms. The mean travel time of stormwater from the injection well to P1 and P3 boreholes was 260 and 360 days respectively. The presence of ARGs and VGs in the biofilms from these boreholes suggest a high spatial movement of ARGs and VGs in the aquifer. The ARGs with the highest abundance were small multidrug resistance efflux pumps (SMR) and multidrug efflux (Mex) followed by ß-lactamase C genes. ß- lactamase C encoding genes were primarily detected in Enterobacteriaceae, Pseudomonadaceae, Bacillaceae, and Rhodobacteraceae families. The VGs encoding siderophores, including aerobactin (iro and iuc genes), followed by pilin, hemolysin, and type III secretion were ubiquitous. Canonical correspondence analysis suggested that Total Organic Carbon (TOC), Dissolved Organic Carbon (DOC), turbidity, and Fe concentration has a significant impact on the microbial community structure of bacteria carrying ARGs and VGs. Post abstraction treatment of groundwater may be prudent to improve water security and reduce potential health risks.


Asunto(s)
Agua Subterránea , Antibacterianos/farmacología , Biopelículas , Farmacorresistencia Microbiana/genética , Genes Bacterianos/genética , Humanos , Prevalencia , Virulencia
2.
Water Res ; 154: 62-71, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30771708

RESUMEN

The purpose of this study was to evaluate the efficacy of a waste stabilization pond (WSP) system to reduce pathogen contaminants in sludge. This included examining the factors that influence the fate and concentration of human pathogens and their indicators in two sludge layers. The decay rates of five study microorganisms were determined under in-situ conditions at a WSP. The background levels of fecal origin microorganisms were consistently detected (ranging: Escherichia coli 104 to 106, enterococci 101 to 103, F-specific bacteriophage (MS2) 101 to 103 and somatic coliphage 101 to 104 colony-forming units (CFU) mL-1, as well as 101 to 102 human adenovirus gene copies mL-1) in the primary facultative pond. Among microorganisms tested, the bacteria generally decayed faster than adenovirus and bacteriophage, particularly in the upper sludge layer. Due to the observed regrowth of E. coli, it may have a limited value as an indicator for pathogen removal in the wastewater stabilization ponds. The abundance of E. coli numbers within the pond biome followed changes in pond temperature over time. The results of the study suggest that viruses could survive for a long time, particularly in deeper layers (>1 metre) in the sludge, during winter months (T90 = 156 d). The presence of human pathogens in WSP sludge, in particular viruses, may be a barrier to its beneficial reuse in agriculture. The results indicate that additional treatment of sludge may be required to mitigate potential public health risks from reuse of sludge for agricultural purposes.


Asunto(s)
Adenovirus Humanos , Aguas del Alcantarillado , Colifagos , Enterococcus , Escherichia coli , Humanos , Levivirus , Estanques
3.
Int J Hyg Environ Health ; 222(3): 541-548, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30738743

RESUMEN

Efficient treatment methods for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from drinking water are needed to reduce health risks. However, there is a lack of empirical data on ARB and ARG removal during conventional water disinfection processes. In this study, the removal of ARB and ARGs by three disinfection processes (chlorination, ozonation, and UV treatment) was investigated on a laboratory scale using Escherichia coli and Enterococcus faecium carrying ARGs. Bacterial inactivation was determined by plate count methods, and ARG damage was quantified using real-time PCR. Only for ozone treatment, similar inactivation rates for bacterial cells and ARGs were observed when 1 mg*L-1 of ozone, with a contact time of 5 min, was used, which resulted in a 5.0 log reduction of bacterial cells and a 4.3-4.6 log reduction of ARGs. For chlorine and UV, inactivation of bacterial cells was observed at lower doses than those needed for the decrease of ARG copy numbers. The use of 0.5 mg*L-1 free chlorine (30 min contact time) led to a 3.8-5.6 log reduction of the bacterial numbers and to a 0.8-2.8 log reduction of ARGs. Ultraviolet light irradiation with 600 J*m-2 resulted in a 4.8-5.5 log reduction of bacterial cells, but in a negligible reduction (0-1.0 log) of ARGs. Although UV and chlorine treatments were effective in the inactivation of bacterial cells, incomplete degradation of ARGs was observed. Therefore, plasmid-borne ARGs can potentially be transferred to other bacteria even after the disinfection process. Our results provide important insights into the fate of ARGs during drinking water disinfection processes.


Asunto(s)
Farmacorresistencia Microbiana/genética , Genes Bacterianos , Purificación del Agua/métodos , Cloro , Desinfectantes , Enterococcus/efectos de los fármacos , Enterococcus/genética , Enterococcus/crecimiento & desarrollo , Enterococcus/efectos de la radiación , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/efectos de la radiación , Oxidantes , Ozono , Rayos Ultravioleta
4.
Sci Total Environ ; 616-617: 669-677, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29103646

RESUMEN

Microbiological safety of reclaimed water is one of the most important issues in managing potential health risks related to wastewater recycling. Presence and removal of human adenovirus (HAdV), human polyomavirus (HPyV), human torque teno virus (HTtV) and somatic coliphage family Microviridae in three wastewater treatment plants (WWTP) in sub-tropical Brisbane, Australia was investigated. All three WWTPs employ activated sludge process with added on Bardenpho process for nutrient removal. HPyV, HAdV, HTtV and Microviridae were consistently detected in the influent (105 to 106 Genomic copies (GC) L-1) and secondary treated effluent (102 to 103GCL-1). The results of this study suggest that, under appropriate conditions, WWTPs with activated sludge process in sub-tropical climate could be an effective treatment barrier with >3 log10 removal of enteric virus. The geometric mean of pooled data for each virus from all sites showed the highest removal for HPyV (3.65 log10) and lowest for HAdV (2.79 log10) which was statistically significant (p=0.00001). Whereas, the removal rate of HTtV and Microviridae was identical (2.81 log10). A poor correlation between the presence of enteric virus in influent or effluent with routinely monitored physicochemical parameters suggests limited use of physicochemical parameters as predictors of enteric virus presence. High prevalence of HAdV in influent and effluent combined with comparatively low removal suggest that it could be used as a model microorganism for determining enteric virus removal efficacy. Additional tertiary treatment may be required prior to effluent reuse for non-potable purposes or discharge into the recreational waters to prevent exposure of people to health hazards.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología , Aguas Residuales/virología , Adenovirus Humanos , Australia , Colifagos , Enterovirus , Monitoreo del Ambiente
5.
Water Sci Technol ; 75(11-12): 2615-2621, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28617281

RESUMEN

Accurate quantitative measurement of viable hookworm ova from environmental samples is the key to controlling hookworm re-infections in the endemic regions. In this study, the accuracy of three quantitative detection methods [culture-based, vital stain and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR)] was evaluated by enumerating 1,000 ± 50 Ancylostoma caninum ova in the laboratory. The culture-based method was able to quantify an average of 397 ± 59 viable hookworm ova. Similarly, vital stain and PMA-qPCR methods quantified 644 ± 87 and 587 ± 91 viable ova, respectively. The numbers of viable ova estimated by the culture-based method were significantly (P < 0.05) lower than vital stain and PMA-qPCR methods. Therefore, both PMA-qPCR and vital stain methods appear to be suitable for the quantitative detection of viable hookworm ova. However, PMA-qPCR would be preferable over the vital stain method in scenarios where ova speciation is needed.


Asunto(s)
Ancylostoma/aislamiento & purificación , Azidas/metabolismo , Azul de Metileno/química , Parasitología/métodos , Propidio/análogos & derivados , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Coloración y Etiquetado/métodos , Animales , Óvulo , Parasitología/instrumentación , Propidio/metabolismo
6.
Sci Total Environ ; 576: 326-334, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27792951

RESUMEN

Overall, 26% of Australian households use rainwater tanks as a source of potable and nonpotable water. Limited information is available on the total bacterial communities in tank water. Therefore, identification of dominant bacterial communities, diversity, and their distribution is important in understanding the microbial quality of tank water. In this study, the abundance and diversity of bacterial communities in 88 tank water samples collected from the urban areas of Brisbane (n=44) and the peri-urban center of Currumbin (n=44) in Southeast Queensland, Australia were determined using amplicon-based Illumina next-generation sequencing. In addition, the SourceTracker program was used to identify the sources of fecal contamination in tank water samples. Sequence reads were also analyzed to detect potential bacterial pathogenic genera in the tank water samples collected. Differences in sample coverage, alpha diversity, and richness did not differ significantly between the Brisbane and Currumbin tank water samples. Comamonadaceae and Planctomycetaceae were the most abundant families in all tank water samples. Curvibacter was the most abundant genus in all tank water samples. SourceTracker revealed that around 34% (Brisbane) and 43% (Currumbin) of tank water samples had a signature for bird fecal contamination. The potential opportunistic pathogenic genera including Burkholderia, Chromobacterium, Clostridium, Legionella, Mycobacterium, Nocardia, and Pseudomonas were most prevalent in tank water samples. Next-generation sequencing can be used as an initial screening tool to identify a wide array of potential pathogenic genera in tank water samples followed by quantifying specific pathogen(s) of interest using more sensitive molecular assays such as quantitative PCR (qPCR).


Asunto(s)
Bacterias/clasificación , Lluvia/microbiología , Microbiología del Agua , Animales , Queensland
7.
Int J Hyg Environ Health ; 219(8): 823-831, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27497615

RESUMEN

Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes blaTEM, blaSHV, ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment.


Asunto(s)
Farmacorresistencia Microbiana/genética , Enterobacteriaceae/genética , Genes Bacterianos , Ríos/microbiología , Virulencia/genética , Amoxicilina/farmacología , Antibacterianos/farmacología , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/aislamiento & purificación , Monitoreo del Ambiente , Alemania , Integrones , Sulfametoxazol/farmacología , Tetraciclina/farmacología , Trimetoprim/farmacología , Microbiología del Agua , Contaminantes del Agua/aislamiento & purificación
8.
Environ Res ; 150: 320-327, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27336236

RESUMEN

A study of six potential opportunistic pathogens (Acanthamoeba spp., Legionella spp., Legionella longbeachae, Pseudomonas aeruginosa, Mycobacterium avium and Mycobacterium intracellulare) and an accidental human pathogen (Legionella pneumophila) in 134 roof-harvested rainwater (RHRW) tank samples was conducted using quantitative PCR (qPCR). All five opportunistic pathogens and accidental pathogen L. pneumophila were detected in rainwater tanks except Legionella longbeachae. Concentrations ranged up to 3.1×10(6) gene copies per L rainwater for Legionella spp., 9.6×10(5) gene copies per L for P. aeruginosa, 6.8×10(5) gene copies per L for M. intracellulare, 6.6×10(5) gene copies per L for Acanthamoeba spp., 1.1×10(5) gene copies per L for M. avium, and 9.8×10(3) gene copies per L for L. pneumophila. Among the organisms tested, Legionella spp. (99% tanks) were the most prevalent followed by M. intracellulare (78%). A survey of tank-owners provided data on rainwater end-uses. Fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp. were enumerated using culture-based methods, and assessed for correlations with opportunistic pathogens and L. pneumophila tested in this study. Opportunistic pathogens did not correlate well with FIB except E. coli vs. Legionella spp. (tau=0.151, P=0.009) and E. coli vs. M. intracellulare (tau=0.14, P=0.015). However, M. avium weakly correlated with both L. pneumophila (Kendall's tau=0.017, P=0.006) and M. intracellulare (tau=0.088, P=0.027), and Legionella spp. also weakly correlated with M. intracellulare (tau=0.128, P=0.028). The presence of these potential opportunistic pathogens in tank water may present health risks from both the potable and non-potable uses documented from the current survey data.


Asunto(s)
Acanthamoeba/aislamiento & purificación , Bacterias/aislamiento & purificación , Agua Potable/microbiología , Agua Potable/parasitología , Lluvia/microbiología , Lluvia/parasitología , ADN Bacteriano/análisis , Heces/microbiología , Heces/parasitología , Queensland , ARN Ribosómico 16S/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Medición de Riesgo , Abastecimiento de Agua
9.
Environ Sci Pollut Res Int ; 23(18): 18639-48, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27306209

RESUMEN

In this study, we have evaluated the efficacy of propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) to differentiate between viable and non-viable Ancylostoma caninum ova. The newly developed method was validated using raw wastewater seeded with known numbers of A. caninum ova. Results of this study confirmed that PMA-qPCR has resulted in average of 88 % reduction (P < 0.05) in gene copy numbers for 50 % viable +50 % non-viable when compared with 100 % viable ova. A reduction of 100 % in gene copies was observed for 100 % non-viable ova when compared with 100 % viable ova. Similar reductions (79-80 %) in gene copies were observed for A. caninum ova-seeded raw wastewater samples (n = 18) collected from wastewater treatment plants (WWTPs) A and B. The newly developed PMA-qPCR method was applied to determine the viable ova of different helminths (A. caninum, A. duodenale, Necator americanus and Ascaris lumbricoides) in raw wastewater, human fecal and soil samples. None of the unseeded wastewater samples were positive for the above-mentioned helminths. N. americanus and A. lumbricoides ova were found in unseeded human fecal and soil samples. For the unseeded human fecal samples (1 g), an average gene copy concentration obtained from qPCR and PMA-qPCR was found to be similar (6.8 × 10(5) ± 6.4 × 10(5) and 6.3 × 10(5) ± 4.7 × 10(5)) indicating the presence of viable N. americanus ova. Among the 24 unseeded soil samples tested, only one was positive for A. lumbricoides. The mean gene copy concentration in the positively identified soil sample was 1.0 × 10(5) ± 1.5 × 10(4) (determined by qPCR) compared to 4.9 × 10(4) ± 3.7 × 10(3) (determined by PMA-qPCR). The newly developed PMA-qPCR methods were able to detect viable helminth ova from wastewater and soil samples and could be adapted for health risk assessment.


Asunto(s)
Monitoreo del Ambiente/métodos , Heces/parasitología , Helmintos/fisiología , Óvulo , Propidio , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Suelo/parasitología , Aguas Residuales/parasitología , Animales , Azidas , Humanos , Propidio/análogos & derivados
10.
Appl Environ Microbiol ; 82(14): 4379-4386, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27208100

RESUMEN

UNLABELLED: Avian and possum fecal droppings may negatively impact roof-harvested rainwater (RHRW) water quality due to the presence of zoonotic pathogens. This study was aimed at evaluating the performance characteristics of a possum feces-associated (PSM) marker by screening 210 fecal and wastewater samples from possums (n = 20) and a range of nonpossum hosts (n = 190) in Southeast Queensland, Australia. The host sensitivity and specificity of the PSM marker were 0.90 and 0.95 (maximum value, 1.00), respectively. The mean concentrations of the GFD marker in possum fecal DNA samples (8.8 × 10(7) gene copies per g of feces) were two orders of magnitude higher than those in the nonpossum fecal DNA samples (5.0 × 10(5) gene copies per g of feces). The host sensitivity, specificity, and concentrations of the avian feces-associated GFD marker were reported in our recent study (W. Ahmed, V. J. Harwood, K. Nguyen, S. Young, K. Hamilton, and S. Toze, Water Res 88:613-622, 2016, http://dx.doi.org/10.1016/j.watres.2015.10.050). The utility of the GFD and PSM markers was evaluated by testing a large number of tank water samples (n = 134) from the Brisbane and Currumbin areas. GFD and PSM markers were detected in 39 of 134 (29%) and 11 of 134 (8%) tank water samples, respectively. The GFD marker concentrations in PCR-positive samples ranged from 3.7 × 10(2) to 8.5 × 10(5) gene copies per liter, whereas the concentrations of the PSM marker ranged from 2.0 × 10(3) to 6.8 × 10(3) gene copies per liter of water. The results of this study suggest the presence of fecal contamination in tank water samples from avian and possum hosts. This study has established an association between the degradation of microbial tank water quality and avian and possum feces. Based on the results, we recommend disinfection of tank water, especially for tanks designated for potable use. IMPORTANCE: The use of roof-harvested rainwater (RHRW) for domestic purposes is a globally accepted practice. The presence of pathogens in rainwater tanks has been reported by several studies, supporting the necessity for the management of potential health risks. The sources of fecal pollution in rainwater tanks are unknown. However, the application of microbial source tracking (MST) markers has the potential to identify the sources of fecal contamination in a rainwater tank. In this study, we provide evidence of avian and possum fecal contamination in tank water samples using molecular markers. This study established a potential link between the degradation of the microbial quality of tank water and avian and possum feces.


Asunto(s)
Heces/microbiología , Microbiología del Agua , Contaminantes del Agua/análisis , Contaminación del Agua , Animales , Aves , ADN Bacteriano/análisis , ADN Bacteriano/genética , Reacción en Cadena de la Polimerasa , Queensland , Trichosurus
11.
Water Res ; 88: 613-622, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26562798

RESUMEN

Avian fecal droppings may negatively impact environmental water quality due to the presence of high concentrations of fecal indicator bacteria (FIB) and zoonotic pathogens. This study was aimed at evaluating the performance characteristics and utility of a Helicobacter spp. associated GFD marker by screening 265 fecal and wastewater samples from a range of avian and non-avian host groups from two continents (Brisbane, Australia and Florida, USA). The host-prevalence and -specificity of this marker among fecal and wastewater samples tested from Brisbane were 0.58 and 0.94 (maximum value of 1.00). These values for the Florida fecal samples were 0.30 (host-prevalence) and 1.00 (host-specificity). The concentrations of the GFD markers in avian and non-avian fecal nucleic acid samples were measured at a test concentration of 10 ng of nucleic acid at Brisbane and Florida laboratories using the quantitative PCR (qPCR) assay. The mean concentrations of the GFD marker in avian fecal nucleic acid samples (5.2 × 10(3) gene copies) were two orders of magnitude higher than non-avian fecal nucleic acid samples (8.6 × 10(1) gene copies). The utility of this marker was evaluated by testing water samples from the Brisbane River, Brisbane and a freshwater creek in Florida. Among the 18 water samples tested from the Brisbane River, 83% (n = 18) were positive for the GFD marker, and the concentrations ranged from 6.0 × 10(1)-3.2 × 10(2) gene copies per 100 mL water. In all, 92% (n = 25) water samples from the freshwater creek in Florida were also positive for the GFD marker with concentrations ranging from 2.8 × 10(1)-1.3 × 10(4) gene copies per 100 mL water. Based on the results, it can be concluded that the GFD marker is highly specific to avian host groups, and could be used as a reliable marker to detect the presence and amount of avian fecal pollution in environmental waters.


Asunto(s)
Monitoreo del Ambiente/métodos , Heces/microbiología , Helicobacter/aislamiento & purificación , Ríos/microbiología , Calidad del Agua , Animales , Biomarcadores/análisis , Aves/microbiología , Florida , Helicobacter/genética , Queensland
12.
Appl Environ Microbiol ; 82(4): 1316-1323, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26682850

RESUMEN

Recreational and potable water supplies polluted with human wastewater can pose a direct health risk to humans. Therefore, sensitive detection of human fecal pollution in environmental waters is very important to water quality authorities around the globe. Microbial source tracking (MST) utilizes human fecal markers (HFMs) to detect human wastewater pollution in environmental waters. The concentrations of these markers in raw wastewater are considered important because it is likely that a marker whose concentration is high in wastewater will be more frequently detected in polluted waters. In this study, quantitative PCR (qPCR) assays were used to determine the concentrations of fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp., HFMs Bacteroides HF183, human adenoviruses (HAdVs), and polyomaviruses (HPyVs) in raw municipal wastewater influent from various climatic zones in Australia. E. coli mean concentrations in pooled human wastewater data sets (from various climatic zones) were the highest (3.2 × 10(6) gene copies per ml), followed by those of HF183 (8.0 × 10(5) gene copies per ml) and Enterococcus spp. (3.6 × 10(5) gene copies per ml). HAdV and HPyV concentrations were 2 to 3 orders of magnitude lower than those of FIB and HF183. Strong positive and negative correlations were observed between the FIB and HFM concentrations within and across wastewater treatment plants (WWTPs). To identify the most sensitive marker of human fecal pollution, environmental water samples were seeded with raw human wastewater. The results from the seeding experiments indicated that Bacteroides HF183 was more sensitive for detecting human fecal pollution than HAdVs and HPyVs. Since the HF183 marker can occasionally be present in nontarget animal fecal samples, it is recommended that HF183 along with a viral marker (HAdVs or HPyVs) be used for tracking human fecal pollution in Australian environmental waters.


Asunto(s)
Adenovirus Humanos/aislamiento & purificación , Enterobacteriaceae/aislamiento & purificación , Heces/microbiología , Poliomavirus/aislamiento & purificación , Microbiología del Agua , Contaminación del Agua/análisis , Animales , Australia , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Water Air Soil Pollut ; 227(9): 327, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-32214527

RESUMEN

Pathogenic human viruses cause over half of gastroenteritis cases associated with recreational water use worldwide. They are difficult to concentrate from environmental waters due to low numbers and small sizes. Rapid enumeration of viruses by quantitative polymerase chain reaction (qPCR) has the potential to improve water quality analysis and risk assessment. However, capturing and recovering these viruses from environmental water remain formidable barriers to routine use. Here, we compared the recovery efficiencies of human adenoviruses (HAdVs) and human polyomaviruses (HPyVs) from 10-L river water samples seeded with raw human wastewater (100 and 10 mL) using hollow-fiber ultrafiltration (HFUF) and glass wool filter (GWF) methods. The mean recovery efficiencies of HAdVs in river water samples through HFUF were 36 and 86 % for 100 and 10 mL of seeded human wastewater, respectively. In contrast, the estimated mean recovery efficiencies of HAdVs in river water samples through GWF were 1.3 and 3 % for 100 and 10 mL seeded raw human wastewater, respectively. Similar trends were also observed for HPyVs. Recovery efficiencies of HFUF method were significantly higher (P < 0.05) than GWF for both HAdVs and HPyVs. Our results clearly suggest that HFUF would be a preferred method for concentrating HAdVs and HPyVs from river water followed by subsequent detection and quantification with PCR/qPCR assays.

14.
J Environ Qual ; 44(5): 1402-12, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26436258

RESUMEN

Recycling of stormwater water and treated effluent via managed aquifer recharge (MAR) has often been hampered because of perceptions of low microbiological quality of recovered water and associated health risks. The goal of this study was to assess the removal of selected pathogens in four large-scale MAR schemes and to determine the influence of aquifer characteristics, geochemistry, and type of recharge water on the pathogen survival times. Bacterial pathogens tested in this study had the shortest one log removal time (, <3 d), followed by oocysts (, <120 d), with enteric viruses having the biggest variability in removal times (, 18 to >200 d). Human adenovirus and rotavirus were relatively persistent under anaerobic conditions (, >200 d). Human adenovirus survived longer than all the other enteric virus tested in the study and hence could be used as a conservative indicator for virus removal in groundwater during MAR. The results suggest that site-specific subsurface conditions such as groundwater chemistry can have considerable influence on the decay rates of enteric pathogens and that viruses are likely to be the critical pathogens from a public health perspective.

15.
Exp Parasitol ; 159: 160-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26358269

RESUMEN

Hookworm infection contributes around 700 million infections worldwide especially in developing nations due to increased use of wastewater for crop production. The effective recovery of hookworm ova from wastewater matrices is difficult due to their low concentrations and heterogeneous distribution. In this study, we compared the recovery rates of (i) four rapid hookworm ova concentration methods from municipal wastewater, and (ii) two concentration methods from sludge samples. Ancylostoma caninum ova were used as surrogate for human hookworm (Ancylostoma duodenale and Necator americanus). Known concentration of A. caninum hookworm ova were seeded into wastewater (treated and raw) and sludge samples collected from two wastewater treatment plants (WWTPs) in Brisbane and Perth, Australia. The A. caninum ova were concentrated from treated and raw wastewater samples using centrifugation (Method A), hollow fiber ultrafiltration (HFUF) (Method B), filtration (Method C) and flotation (Method D) methods. For sludge samples, flotation (Method E) and direct DNA extraction (Method F) methods were used. Among the four methods tested, filtration (Method C) method was able to recover higher concentrations of A. caninum ova consistently from treated wastewater (39-50%) and raw wastewater (7.1-12%) samples collected from both WWTPs. The remaining methods (Methods A, B and D) yielded variable recovery rate ranging from 0.2 to 40% for treated and raw wastewater samples. The recovery rates for sludge samples were poor (0.02-4.7), although, Method F (direct DNA extraction) provided 1-2 orders of magnitude higher recovery rate than Method E (flotation). Based on our results it can be concluded that the recovery rates of hookworm ova from wastewater matrices, especially sludge samples, can be poor and highly variable. Therefore, choice of concentration method is vital for the sensitive detection of hookworm ova in wastewater matrices.


Asunto(s)
Ancylostoma/aislamiento & purificación , Aguas Residuales/parasitología , Purificación del Agua/normas , Ancylostoma/genética , Animales , Centrifugación/normas , ADN de Helmintos/aislamiento & purificación , ADN Espaciador Ribosómico/análisis , Perros , Heces/parasitología , Filtración/normas , Humanos , Óvulo , Queensland , ARN Ribosómico 5.8S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Estándares de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Aguas del Alcantarillado/parasitología , Ultrafiltración/métodos , Ultrafiltración/normas , Purificación del Agua/métodos , Australia Occidental
16.
Appl Environ Microbiol ; 81(20): 7067-77, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26231650

RESUMEN

In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways.


Asunto(s)
Heces/microbiología , Marcadores Genéticos , Microbiología del Agua , Contaminación del Agua/análisis , Animales , Australia , Aves , Bovinos , Análisis por Conglomerados , ADN Ribosómico/química , ADN Ribosómico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Caballos , Humanos , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
17.
Exp Parasitol ; 159: 5-12, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26297680

RESUMEN

The risk of human hookworm infections from land application of wastewater matrices could be high in regions with high hookworm prevalence. A rapid, sensitive and specific hookworm detection method from wastewater matrices is required in order to assess human health risks. Currently available methods used to identify hookworm ova to the species level are time consuming and lack accuracy. In this study, a real-time PCR method was developed for the rapid, sensitive and specific detection of canine hookworm (Ancylostoma caninum) ova from wastewater matrices. A. caninum was chosen because of its morphological similarity to the human hookworm (Ancylostoma duodenale and Necator americanus). The newly developed PCR method has high detection sensitivity with the ability to detect less than one A. caninum ova from 1 L of secondary treated wastewater at the mean threshold cycle (CT) values ranging from 30.1 to 34.3. The method is also able to detect four A. caninum ova from 1 L of raw wastewater and from ∼4 g of treated sludge with mean CT values ranging from 35.6 to 39.8 and 39.8 to 39.9, respectively. The better detection sensitivity obtained for secondary treated wastewater compared to raw wastewater and sludge samples could be attributed to sample turbidity. The proposed method appears to be rapid, sensitive and specific compared to traditional methods and has potential to aid in the public health risk assessment associated with land application of wastewater matrices. Furthermore, the method can be adapted to detect other helminth ova of interest from wastewater matrices.


Asunto(s)
Ancylostoma/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Aguas Residuales/parasitología , Ancylostoma/genética , Animales , ADN de Helmintos/aislamiento & purificación , ADN Ribosómico/aislamiento & purificación , Perros , Heces/parasitología , Límite de Detección , Óvulo , ARN Ribosómico 5.8S/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Aguas del Alcantarillado/parasitología
18.
Appl Environ Microbiol ; 81(13): 4277-83, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25888174

RESUMEN

Members of the genus Cryptosporidium are waterborne protozoa of great health concern. Many studies have attempted to find appropriate surrogates for assessing Cryptosporidium filtration removal in porous media. In this study, we evaluated the filtration of Cryptosporidium parvum in granular limestone medium by the use of biotin- and glycoprotein-coated carboxylated polystyrene microspheres (CPMs) as surrogates. Column experiments were carried out with core material taken from a managed aquifer recharge site in Adelaide, Australia. For the experiments with injection of a single type of particle, we observed the total removal of the oocysts and glycoprotein-coated CPMs, a 4.6- to 6.3-log10 reduction of biotin-coated CPMs, and a 2.6-log10 reduction of unmodified CPMs. When two different types of particles were simultaneously injected, glycoprotein-coated CPMs showed a 5.3-log10 reduction, while the uncoated CPMs displayed a 3.7-log10 reduction, probably due to particle-particle interactions. Our results confirm that glycoprotein-coated CPMs are the most accurate surrogates for C. parvum; biotin-coated CPMs are slightly more conservative, while unmodified CPMs are markedly overly conservative for predicting C. parvum removal in granular limestone medium. The total removal of C. parvum observed in our study suggests that granular limestone medium is very effective for the filtration removal of C. parvum and could potentially be used for the pretreatment of drinking water and aquifer storage recovery of recycled water.


Asunto(s)
Carbonato de Calcio , Cryptosporidium parvum/aislamiento & purificación , Filtración , Agua Subterránea/parasitología , Australia , Biotina/análisis , Glicoproteínas/metabolismo , Microesferas , Modelos Teóricos
19.
Environ Sci Technol ; 49(5): 3084-90, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25648758

RESUMEN

Quantitative PCR (qPCR) assays were used to determine the concentrations of E. coli including shiga toxin-producing E. coli (STEC) associated virulence genes (eaeA, stx1, stx2, and hlyA) in ten animal species (fecal sources) and environmental water samples in Southeast Queensland, Australia. The mean Log10 concentrations and standard deviations of E. coli 23S rRNA across fecal sources ranged from 1.3 ± 0.1 (horse) to 6.3 ± 0.4 (cattle wastewater) gene copies at a test concentration of 10 ng of DNA. The differences in mean concentrations of E. coli 23S rRNA gene copies among fecal source samples were significantly different from each other (P < 0.0001). Among the virulence genes, stx2 (25%, 95% CI, 17-33%) was most prevalent among fecal sources, followed by eaeA (19%, 95% CI, 12-27%), stx1 (11%, 95% CI, 5%-17%) and hlyA (8%, 95% CI, 3-13%). The Log10 concentrations of STEC virulence genes in cattle wastewater samples ranged from 3.8 to 5.0 gene copies at a test concentration of 10 ng of DNA. Of the 18 environmental water samples tested, three (17%) were positive for eaeA and two (11%) samples were also positive for the stx2 virulence genes. The data presented in this study will aid in the estimation of quantitative microbial risk assessment (QMRA) from fecal pollution of domestic and wild animals in drinking/recreational water catchments.


Asunto(s)
Heces/microbiología , Ríos/microbiología , Escherichia coli Shiga-Toxigénica , Aguas Residuales/microbiología , Animales , Bovinos , Perros , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Humanos , Macropodidae , Reacción en Cadena de la Polimerasa , Queensland , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Microbiología del Agua
20.
Appl Environ Microbiol ; 81(6): 2042-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25576614

RESUMEN

Pathogenic human viruses cause over half of gastroenteritis cases associated with recreational water use worldwide. They are relatively difficult to concentrate from environmental waters due to typically low concentrations and their small size. Although rapid enumeration of viruses by quantitative PCR (qPCR) has the potential to greatly improve water quality analysis and risk assessment, the upstream steps of capturing and recovering viruses from environmental water sources along with removing PCR inhibitors from extracted nucleic acids remain formidable barriers to routine use. Here, we compared the efficiency of virus recovery for three rapid methods of concentrating two microbial source tracking (MST) viral markers human adenoviruses (HAdVs) and polyomaviruses (HPyVs) from one liter tap water and river water samples on HA membranes (90 mm in diameter). Samples were spiked with raw sewage, and viral adsorption to membranes was promoted by acidification (method A) or addition of MgCl2 (methods B and C). Viral nucleic acid was extracted directly from membranes (method A), or viruses were eluted with NaOH and concentrated by centrifugal ultrafiltration (methods B and C). No inhibition of qPCR was observed for samples processed by method A, but inhibition occurred in river samples processed by B and C. Recovery efficiencies of HAdVs and HPyVs were ∼10-fold greater for method A (31 to 78%) than for methods B and C (2.4 to 12%). Further analysis of membranes from method B revealed that the majority of viruses were not eluted from the membrane, resulting in poor recovery. The modification of the originally published method A to include a larger diameter membrane and a nucleic acid extraction kit that could accommodate the membrane resulted in a rapid virus concentration method with good recovery and lack of inhibitory compounds. The frequently used strategy of viral absorption with added cations (Mg(2+)) and elution with acid were inefficient and more prone to inhibition, and will result in underestimation of the prevalence and concentrations of HAdVs and HPyVs markers in environmental waters.


Asunto(s)
Adenovirus Humanos/aislamiento & purificación , Poliomavirus/aislamiento & purificación , Microbiología del Agua , Biomarcadores/análisis , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...