Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(18): 4858-4863, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38668864

RESUMEN

The surfaces of nanomaterials with applications in optoelectronics and catalysis control their physicochemical properties. NMR spectroscopy, enhanced by dynamic nuclear polarization (DNP), is a powerful approach to probe the local environment of spin-1/2 nuclei near surfaces. However, this technique often lacks robustness and resolution for half-integer quadrupolar nuclei, which represent more than 66% of the NMR-active isotopes. A novel pulse sequence is introduced here to circumvent these issues. This method is applied to observe with high-resolution 27Al and 17O spin-5/2 nuclei on the surface of γ-alumina. Moreover, we report high-resolution 17O spectra of ZnO nanoparticles used in optoelectronics. Their assignment using DFT calculations allows the first NMR observation of vacancies near the surfaces. Finally, we employ the introduced NMR technique to observe 11B spin-3/2 nuclei on the surface of partially oxidized boron nitride supported on silica and to distinguish its different BO2OH active sites.

2.
J Magn Reson ; 354: 107530, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37586252

RESUMEN

Amorphous lithium phosphorus oxynitrides (LiPON), prepared by reactive magnetron sputtering, have become the electrolytes of choice for all-solid-state thin film microbatteries since its discovery in early 1990s. Nevertheless, there is still a lack of understanding of their atomic-level structure and its influence on ionic conductivity. Solid-state NMR spectroscopy represents a promising technique to determine the atomic-level structure of LiPON glasses but is challenging owing to its low sensitivity in the case of thin film materials. Recently, 31P solid-state NMR spectra of LiPON thin films were acquired under magic-angle spinning (MAS) conditions and assigned with the help of density functional theory (DFT) calculations of NMR parameters. However, the identification of the different P local environments in these materials is still a challenge owing to their amorphous structure and the lack of resolution of the 31P MAS NMR spectra. We show herein how the NMR observation of internuclear proximities helps to establish the nature of P sites in LiPON thin films. The 31P-14N proximities are probed by a transfer of population in double resonance (TRAPDOR) experiment, whereas 31P-31P proximities are observed using one-dimensional (1D) 31P double-quantum (DQ)-filtered and two-dimensional (2D) 31P homonuclear correlation spectra as well as dipolar dephasing experiments using DQ-DRENAR (DQ-based dipolar-recoupling effects nuclear alignment reduction) technique. The obtained NMR data further support the recently proposed assignment of 31P NMR signals of LiPON thin films. With the help of this assignment, the simulation of the quantitative 1D 31P NMR spectrum indicates that PO43- orthophosphate anions prevail in LiPON thin films and N atoms are mainly incorporated in [O3PNPO3]5- dimeric anions. PO3N4- isolated tetrahedra and [O3POPO3]4- anions are also present but in smaller amounts.

3.
Solid State Nucl Magn Reson ; 125: 101863, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37060799

RESUMEN

In MQMAS-based high-resolution solid-state NMR experiments of half-integer spin quadrupolar nuclei, the high radiofrequency (RF) field requirement for the MQ excitation and conversion steps with two hard-pulses is often a sensitivity limiting factor in many practical applications. Recently, the use of two cosine-modulated (cos) low-power (lp) pulses, lasting one-rotor period each, was successfully introduced for efficient MQ excitation and conversion of spin-3/2 nuclei with a reduced RF amplitude. In this study, we extend our previous investigations of spin-3/2 nuclei to systems with higher spin values and discuss the applicability of coslp-MQ excitation and conversion in MQMAS and MQ-HETCOR experiments under slow and fast spinning conditions. For the numerical simulations and experiments we used a moderate magnetic field of 14.1 T. Two spin-5/2 nuclei (85Rb and 27Al) are mainly employed with a large variety of CQ values, but we show that the practical set up is also available for higher spin values, such as spin-9/2 with 93Nb in Cs4Nb11O30. We demonstrate for nuclei with spin value larger than 3/2 a preferential use of coslp-MQ acquisition for low-gamma nuclei and/or large CQ values with a much reduced RF-field with respect to that of hard-pulses used with conventional methods.


Asunto(s)
Campos Magnéticos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Ondas de Radio
4.
Materials (Basel) ; 16(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36837097

RESUMEN

The study of the provenance of dolomitic marble artefacts has become relevant since it was discovered that quarries of this marble other than that of Cape-Vathy located on the island of Thasos have been exploited since Antiquity. To improve our knowledge about the provenance of materials and the extent of their dispersion, multiple archaeometric studies were performed in the past including isotope analyses, petrography, cathodoluminescence, and elemental analyses. In the present work, solid-state nuclear magnetic resonance (NMR) spectroscopy has been added to this panel of techniques. NMR allows the characterization of the material at a molecular level by looking at different nuclei: carbon, magnesium, and calcium. Statistical analysis of the data collected on both quarry samples and archaeologic items was also implemented and clearly demonstrates the efficiency of a holistic approach for provenance elucidation. Finally, the first 25Mg NMR tests have shown the potential of this technique to discriminate between dolomitic marbles of different provenance. The results are discussed in terms of their historical meaning and illustrate the exploitation of sources of dolomitic marbles other than the Greek Thasos source.

5.
J Magn Reson ; 348: 107388, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36841183

RESUMEN

Various two-dimensional (2D) homonuclear correlation experiments have been proposed to observe proximities between identical half-integer spin quadrupolar nuclei in solids. These experiments select either the single- or double-quantum coherences during the indirect evolution period, t1. We compare here the efficiency and the robustness of the 2D double-quantum to single-quantum (DQ-SQ) and SQ-SQ homonuclear correlations for two half-integer spin quadrupolar isotopes subject to small chemical shift anisotropy (CSA): 11B with a nuclear spin I = 3/2 and 27Al with I = 5/2. Such a comparison is performed using experiments on two model samples: Li2B4O7 for 11B and AlPO4-14 for 27Al. For both isotopes, the DQ-SQ homonuclear correlations are recommended since they allow probing the proximities between nuclei with close or identical frequencies. In the case of small or moderate isotropic chemical shift differences (e.g. 11B) the [SR221] or [BR221] bracketed DQ-SQ recoupling schemes are recommended; whereas it is the BR221 un-bracketed one otherwise (e.g. 27Al).

6.
Faraday Discuss ; 241(0): 250-265, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36134444

RESUMEN

The possibility of enriching in 17O the water molecules within hydrated biominerals belonging to the Ca-pyrophosphate family was investigated, using liquid assisted grinding (LAG) in the presence of 17O-labelled water. Two phases with different hydration levels, namely triclinic calcium pyrophosphate dihydrate (Ca2P2O7·2H2O, denoted t-CPPD) and monoclinic calcium pyrophosphate tetrahydrate (Ca2P2O7·4H2O, denoted m-CPPT ß) were enriched in 17O using a "post-enrichment" strategy, in which the non-labelled precursors were ground under gentle milling conditions in the presence of stoichiometric quantities of 17O-enriched water (introduced here in very small volumes ∼10 µL). Using high-resolution 17O solid-state NMR (ssNMR) analyses at multiple magnetic fields, and dynamic nuclear polarisation (DNP)-enhanced 17O NMR, it was possible to show that the labelled water molecules are mainly located at the core of the crystal structures, but that they can enter the lattice in different ways, namely by dissolution/recrystallisation or by diffusion. Overall, this work sheds light on the importance of high-resolution 17O NMR to help decipher the different roles that water can play as a liquid-assisted grinding agent and as a reagent for 17O-isotopic enrichment.


Asunto(s)
Pirofosfato de Calcio , Difosfatos , Cristalización , Pirofosfato de Calcio/química , Agua/química
7.
Inorg Chem ; 61(46): 18476-18485, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36343162

RESUMEN

NaGaS2 is a newly discovered compound that has already shown great promise for a variety of applications because of its layered structure and ion exchange properties. In this work, crystalline NaGaS2 has been synthesized by an alternative method to what has been previously published, namely, by mechanochemistry, either by a direct one-step process or by a two-step process. In the one-step process, crystalline NaGaS2 is directly formed by milling sodium sulfide Na2S and gallium(III) sulfide Ga2S3. However, an amorphous material is present in majority together with the crystalline phase. In the two-step process, amorphous NaGaS2 is first obtained by mechanical milling and then heated above its glass transition temperature to obtain a glass-ceramic mainly composed of crystalline NaGaS2. For the two-step process, changes of the local atomic-level structure in amorphous NaGaS2 and after crystallization were analyzed by high-field solid-state nuclear magnetic resonance (NMR) spectroscopy as well as by X-ray total scattering and pair distribution function (PDF) analysis. Based on quantitative analysis on the 23Na NMR spectra, modifying the annealing treatment can promote the formation of the crystalline phase up to a molar fraction of 83.8%.

8.
J Magn Reson ; 345: 107324, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36370548

RESUMEN

Despite its ease in experimental set up, the low sensitivity of MQMAS experiments is often a limiting factor in many practical applications. This is mainly due to the large radiofrequency (RF) field requirement of the two short hard-pulses often used for the optimum MQ excitation and conversion steps. Very recently, two novel MQMAS experiments have been proposed for I = 3/2 nuclei, namely lp-MQMAS and coslp-MQMAS, enabling an efficient MQ excitation/conversion with a reduced RF requirement, by utilizing two long pulses lasting one rotor period each, with or without cosine modulation. In this study, we focus on the practical considerations of these new methods and discuss their pros and cons to elucidate their appropriate use under both moderate and fast spinning conditions. Using four I = 3/2 (87Rb, 71Ga, 35Cl and 23Na) nuclei at a moderate magnetic field (B0 = 14.1 T), we show the superior use of these experiments, especially for samples with large CQ values and/or low-gamma nuclei. Compared to all other existing sequences, the coslp-MQMAS method with initial WURST signal enhancement is the most robust, efficient and resolved high-resolution 2D method for spin 3/2 nuclei. Furthermore, using {23Na}-1H spin systems, we demonstrate the sensitivity advantage of the WURST coslp-MQ-HETCOR acquisition upon 1H detection and fast MAS conditions.

10.
Solid State Nucl Magn Reson ; 122: 101835, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36308816

RESUMEN

The indirect NMR detection of quadrupolar nuclei in solids under magic-angle spinning (MAS) is possible with the through-space HMQC (heteronuclear multiple-quantum coherence) scheme incorporating the TRAPDOR (transfer of population in double-resonance) dipolar recoupling. This sequence, called T-HMQC, exhibits limited t1-noise. In this contribution, with the help of numerical simulations of spin dynamics, we show that most of the time, the fastest coherence transfer in the T-HMQC scheme is achieved when TRAPDOR recoupling employs the highest radiofrequency (rf) field compatible with the probe specifications. We also demonstrate how the indirect detection of the triple-quantum (3Q) coherences of spin-3/2 quadrupolar nuclei in solids improves the spectral resolution for these isotopes. The sequence is then called T-HMQC3. We demonstrate the gain in resolution provided by this sequence for the indirect proton detection of 35Cl nuclei in l-histidine∙HCl and l-cysteine∙HCl, as well as that of 23Na isotope in NaH2PO4. These experiments indicate that the gain in resolution depends on the relative values of the chemical and quadrupolar-induced shifts (QIS) for the different spin-3/2 species. In the case of NaH2PO4, we show that the transfer efficiency of the T-HMQC3 sequence employing an rf-field of 80 kHz with a MAS frequency of 62.5 kHz reaches 75% of that of the t1-noise eliminated (TONE) dipolar-mediated HMQC (D-HMQC) scheme.


Asunto(s)
Isótopos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Protones
11.
Chem Commun (Camb) ; 58(82): 11551-11554, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36165029

RESUMEN

Chemically assisted swapping of labile protons by deuterons is presented for amino acids, polysaccharides, pharmaceutical compounds, and their solid formulations. Solid-state packing interactions in these compounds are elucidated by 1H-2H isotope correlation NMR spectroscopy (iCOSY). A minuscule concentration of dopamine, 5 wt% or ∼100 µg, in a solid formulation can be detected by 2H NMR at 28.2 T (1H, 1200 MHz) in under a minute.


Asunto(s)
Dopamina , Protones , Aminoácidos , Deuterio/química , Preparaciones Farmacéuticas
12.
J Phys Chem C Nanomater Interfaces ; 126(29): 12044-12059, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35928237

RESUMEN

Calcium oxalate minerals of the general formula CaC2O4 . xH2O are widely present in nature and usually associated with pathological calcifications, constituting up to 70-80% of the mineral component of renal calculi. The monohydrate phase (CaC2O4 .H2O, COM) is the most stable form, accounting for the majority of the hydrated calcium oxalates found. These mineral phases have been studied extensively via X-ray diffraction and IR spectroscopy and, to a lesser extent, using 1H, 13C, and 43Ca solid-state NMR spectroscopy. However, several aspects of their structure and reactivity are still unclear, such as the evolution from low- to high-temperature COM structures (LT-COM and HT-COM, respectively) and the involvement of water molecules in this phase transition. Here, we report for the first time a 17O and 2H solid-state NMR investigation of the local structure and dynamics of water in the COM phase. A new procedure for the selective 17O- and 2H-isotopic enrichment of water molecules within the COM mineral is presented using mechanochemistry, which employs only microliter quantities of enriched water and leads to exchange yields up to ∼30%. 17O NMR allows both crystallographically inequivalent water molecules in the LT-COM structure to be resolved, while 2H NMR studies provide unambiguous evidence that these water molecules are undergoing different types of motions at high temperatures without exchanging with one another. Dynamics appear to be essential for water molecules in these structures, which have not been accounted for in previous structural studies on the HT-COM structure due to lack of available tools, highlighting the importance of such NMR investigations for refining the overall knowledge on biologically relevant minerals like calcium oxalates.

13.
Solid State Nucl Magn Reson ; 120: 101808, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780556

RESUMEN

Analysis of short-to-intermediate range intermolecular interactions offers a great way of characterizing the solid-state organization of small molecules and materials. This can be achieved by two-dimensional (2D) homo- and heteronuclear correlation NMR spectroscopy, for example, by carrying out experiments at high magnetic fields in conjunction with fast magic-angle spinning (MAS) techniques. But, detecting 2D peaks for heteronuclear dipolar coupled spin pairs separated by greater than 3 Å is not always straightforward, particularly when low-gamma quadrupolar nuclei are involved. Here, we present a 2D correlation NMR experiment that combines the advantages of heteronuclear-multiple quantum coherence (HMQC) and proton-based spin-diffusion (SD) pulse sequences using radio-frequency-driven-recouping (RFDR) to probe inter and intramolecular 1H-X (X = 14N, 35Cl) interactions. This experiment can be used to acquire 2D 1H{X}-HMQC filtered 1H-1H correlation as well as 2D 1H-X HMQC spectra. Powder forms of dopamine·HCl and l-histidine·HCl·H2O are characterized at high fields (21.1 T and 18.8 T) with fast MAS (60 kHz) using the 2D HMQC-SD-RFDR approach. Solid-state NMR results are complemented with NMR crystallography analyses using the gauge-including projector augmented wave (GIPAW) approach. For histidine·HCl·H2O, 2D peaks associated with 14N-1H-1H and 35Cl-1H-1H distances of up to 4.4 and 3.9 Å have been detected. This is further corroborated by the observation of 2D peaks corresponding to 14N-1H-1H and 35Cl-1H-1H distances of up to 4.2 and 3.7 Å in dopamine·HCl, indicating the suitability of the HMQC-SD-RFDR experiments for detecting medium-range proximities in molecular solids.


Asunto(s)
Dopamina , Protones , Histidina/química , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular
14.
J Chem Phys ; 156(6): 064202, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35168357

RESUMEN

Recently, the T-hetero-nuclear multiple quantum coherence (T-HMQC) sequence using the TRAPDOR (transfer of population in double resonance) recoupling has been introduced for the indirect detection via protons of quadrupolar nuclei with spin I = 1 (14N) or 3/2 (35Cl) in solids at fast magic-angle spinning (MAS). The sequence is simple as it only uses four rectangular pulses and exhibits low t1-noise because the recoupling pulses are applied to the indirectly detected isotope, I. We demonstrate that this sequence is applicable for the detection via protons of spin-1/2 nuclei subject to large chemical shift anisotropy, such as 195Pt. We also report the proton detection of double-quantum (2Q) coherences of 14N nuclei using this sequence. This 2Q version is more robust to the adjustment of the magic angle and the instabilities of the MAS frequencies than its parent single-quantum (1Q) version since the 2Q coherences are not broadened by the first-order quadrupole interaction. In practice, than its 1Q counterpart for the indirect detection of 14N nuclei, the 2Q variant benefits from a slightly higher resolution and comparable sensitivity. In this article, we derive for the first time the Hamiltonian that describes the spin dynamics during the TRAPDOR recoupling. This Hamiltonian demonstrates the importance of the adiabaticity parameter as well as the role of third-order terms in the effective Hamiltonian. The effects of offsets, radio-frequency field, and recoupling time on the efficiency of the T-HMQC sequence are analyzed numerically as well as with experimental detection via protons of 195Pt nuclei in a mixture of cis- and trans-platin and that of 14N and 35Cl isotopes in l-histidine HCl.

15.
J Magn Reson ; 333: 107093, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34749038

RESUMEN

Recently, we established an experimental setup protocol to perform the population transfer from half-integer quadrupolar spin to 1H nuclei under fast MAS in the context of MQ-HETCOR experiments. In this article, we further develop the high-resolution 2D HETCOR methods by ST-based approaches, making use of the sensitivity advantage of STMAS over its MQMAS counterpart. In a similar manner to the previous work, which utilized CP and RINEPT for the population transfer, we also demonstrate the experimental setup protocol for PRESTO. Using {23Na}-1H and {27Al}-1H spin systems of powder samples, we compare a series of MQ/ST-HETCOR 2D spectra to discuss the pros and cons of the distinct MQ/ST-based approaches for spin 3/2 and 5/2 nuclei, respectively. We also incorporate two experimental tricks to reduce the experimental time of such long 2D experiments, the Optimized Rotor-Synchronization (ORS) and the Non-Uniform Sampling (NUS), in the context of high-resolution spectra of half-integer quadrupolar spin nuclei.

16.
J Phys Chem Lett ; 12(47): 11563-11572, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34806885

RESUMEN

Amorphous silica-aluminas (ASAs) are important acidic catalysts and supports for many industrially essential and sustainable processes. The identification of surface acid sites with their local structures on ASAs is of critical importance for tuning their catalytic properties but still remains a great challenge and is under debate. Here, ultrahigh magnetic field (35.2 T) 27Al-{1H} D-HMQC (dipolar-mediated heteronuclear multiple-quantum correlation) two-dimensional NMR experiments demonstrate two types of Brønsted acid sites in ASA catalysts. In addition to the known pseudobridging silanol acid sites, the use of ultrahigh field NMR provides the first direct experimental evidence for the existence of bridging silanol (BS: SiOHAl) acid sites in ASAs, which has been hotly debated in the past few decades. This discovery provides new opportunities for scientists and engineers to develop and apply ASAs in various reaction processes due to the significance of BS in chemical and fuel productions based on its strong Brønsted acidity.

17.
Chemistry ; 27(64): 15944-15953, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34624150

RESUMEN

Layered double hydroxides (LDHs) serve a score of applications in catalysis, drug delivery, and environmental remediation. Smarter crystallography, combining X-ray diffraction and NMR spectroscopy revealed how interplay between carbonate and pH determines the LDH structure and Al ordering in ZnAl LDH. Carbonate intercalated ZnAl LDHs were synthesized at different pH (pH 8.5, pH 10.0, pH 12.5) with a Zn/Al ratio of 2, without subsequent hydrothermal treatment to avoid extensive recrystallisation. In ideal configuration, all Al cations should be part of the LDH and be coordinated with 6 Zn atoms, but NMR revealed two different Al local environments were present in all samples in a ratio dependent on synthesis pH. NMR-crystallography, integrating NMR spectroscopy and X-ray diffraction, succeeded to identify them as Al residing in the highly ordered crystalline phase, next to Al in disordered material. With increasing synthesis pH, crystallinity increased, and the side phase fraction decreased. Using 1 H-13 C, 13 C-27 Al HETCOR NMR in combination with 27 Al MQMAS, 27 Al-DQ-SQ measurements and Rietveld refinement on high-resolution PXRD data, the extreme anion exchange selectivity of these LDHs for CO3 2- over HCO3 - was linked to strict Al and CO3 2- ordering in the crystalline LDH. Even upon equilibration of the LDH in pure NaHCO3 solutions, only CO3 2- was adsorbed by the LDH. This reveals the structure directing role of bivalent cations such as CO3 2- during crystallization of [M2+ 4 M3+ 2 (OH)2 ]2+ [A2- ]1 ⋅yH2 O LDH phases.

18.
J Magn Reson ; 329: 107028, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34225067

RESUMEN

In this article, we compare the various schemes of magnetization transfer from half-integer quadrupolar spins to 1H nuclei and we establish an efficient protocol to perform these transfers under MQMAS high-resolution with the MQ-HETCOR and MQ-SPAM-HETCOR experiments under fast MAS. The MQMAS efficiencies are analyzed with SIMPSON simulations, and the CPMAS and RINEPT magnetization transfers are compared at 62.5 kHz MAS using {23Na}-1H and {27Al}-1H MQ-HETCOR and MQ-SPAM-HETCOR experiments performed on NaH2PO4, Na2HPO4, Na citrate dihydrate and ipa-AlPO-14 powder samples. We discuss the pros and cons of these approaches, aiming to record 2D spectra of the best possible quality under fast MAS. We also incorporate some experimental approaches to reduce the total experiment time of such long 2D experiments.

19.
J Magn Reson ; 330: 107029, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34311423

RESUMEN

The measurement of dipolar and J- couplings between 29Si and 17O isotopes is challenging owing to (i) the low abundance of both isotopes and (ii) their close Larmor frequencies, which only differ by 19%. These issues are circumvented here by the use of isotopic enrichment and dedicated triple-resonance magic-angle spinning NMR probe. The surface of 29Si-enriched silica was labelled with 17O isotope and heated at 80 and 200 °C. 29Si-17O connectivities and proximities were probed using two-dimensional (2D) through-bond and through-space heteronuclear multiple-quantum coherences (J- and D-HMQC) experiments between 17O and 29Si nuclei. The simulation of the build-up of the J- and D-HMQC signals allowed the first experimental measurement of J- and dipolar coupling constants between 17O and 29Si nuclei. These HMQC experiments allow distinguishing two distinct siloxane (SiOSi) oxygen sites: (i) those covalently bonded to Q3 and Q4 groups, having a hydroxyl group as a second neighbour and (ii) those covalently bonded to two Q4 groups. The measured J- and dipolar coupling constants of siloxane 17O nucleus with Q4 29Si nuclei differ from those with Q3 29Si nuclei. These results indicate that the 29Si-17O one-bond J-coupling and Si-O bond length depend on the second neighbours of the Si atoms.

20.
Chemistry ; 27(49): 12574-12588, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34131984

RESUMEN

In recent years, there has been increasing interest in developing cost-efficient, fast, and user-friendly 17 O enrichment protocols to help to understand the structure and reactivity of materials by using 17 O NMR spectroscopy. Here, we show for the first time how ball milling (BM) can be used to selectively and efficiently enrich the surface of fumed silica, which is widely used at industrial scale. Short milling times (up to 15 min) allowed modulation of the enrichment level (up to ca. 5 %) without significantly changing the nature of the material. High-precision 17 O compositions were measured at different milling times by using large-geometry secondary-ion mass spectrometry (LG-SIMS). High-resolution 17 O NMR analyses (including at 35.2 T) allowed clear identification of the signals from siloxane (Si-O-Si) and silanols (Si-OH), while DNP analyses, performed by using direct 17 O polarization and indirect 17 O{1 H} CP excitation, agreed with selective labeling of the surface. Information on the distribution of Si-OH environments at the surface was obtained from 2D 1 H-17 O D-HMQC correlations. Finally, the surface-labeled silica was reacted with titania and using 17 O DNP, their common interface was probed and Si-O-Ti bonds identified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...