Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 10(5): 693, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38755278
2.
Nat Plants ; 10(4): 527, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589487
3.
Nat Plants ; 10(2): 200, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38337040
4.
Nat Plants ; 10(1): 6, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38135790
5.
Nat Plants ; 9(12): 1943, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38062137
6.
Nat Plants ; 9(11): 1781, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37935989
7.
Nat Plants ; 9(10): 1578, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37814024
8.
Nat Plants ; 9(9): 1373, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37679567
9.
Nat Plants ; 9(4): 508, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37059806
10.
Nat Plants ; 9(3): 376, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36894626
11.
Plant Physiol ; 191(3): 1612-1633, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36649171

RESUMEN

In land plants and cyanobacteria, co-translational association of chlorophyll (Chl) to the nascent D1 polypeptide, a reaction center protein of photosystem II (PSII), requires a Chl binding complex consisting of a short-chain dehydrogenase (high chlorophyll fluorescence 244 [HCF244]/uncharacterized protein 39 [Ycf39]) and one-helix proteins (OHP1 and OHP2 in chloroplasts) of the light-harvesting antenna complex superfamily. Here, we show that an ohp2 mutant of the green alga Chlamydomonas (Chlamydomonas reinhardtii) fails to accumulate core PSII subunits, in particular D1 (encoded by the psbA mRNA). Extragenic suppressors arose at high frequency, suggesting the existence of another route for Chl association to PSII. The ohp2 mutant was complemented by the Arabidopsis (Arabidopsis thaliana) ortholog. In contrast to land plants, where psbA translation is prevented in the absence of OHP2, ribosome profiling experiments showed that the Chlamydomonas mutant translates the psbA transcript over its full length. Pulse labeling suggested that D1 is degraded during or immediately after translation. The translation of other PSII subunits was affected by assembly-controlled translational regulation. Proteomics showed that HCF244, a translation factor which associates with and is stabilized by OHP2 in land plants, still partly accumulates in the Chlamydomonas ohp2 mutant, explaining the persistence of psbA translation. Several Chl biosynthesis enzymes overaccumulate in the mutant membranes. Partial inactivation of a D1-degrading protease restored a low level of PSII activity in an ohp2 background, but not photoautotrophy. Taken together, our data suggest that OHP2 is not required for psbA translation in Chlamydomonas, but is necessary for D1 stabilization.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Chlamydomonas reinhardtii , Chlamydomonas , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , Proteínas/metabolismo , Cloroplastos/metabolismo , Arabidopsis/genética , Plantas/metabolismo , Clorofila/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas de Arabidopsis/metabolismo
12.
Nat Plants ; 9(2): 195, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36717637
13.
Plant Cell ; 34(3): 1075-1099, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34958373

RESUMEN

Photosynthesis is a central determinant of plant biomass production, but its homeostasis is increasingly challenged by heat. Little is known about the sensitive regulatory principles involved in heat acclimation that underly the biogenesis and repair of chloroplast-encoded core subunits of photosynthetic complexes. Employing time-resolved ribosome and transcript profiling together with selective ribosome proteomics, we systematically deciphered these processes in chloroplasts of Chlamydomonas reinhardtii. We revealed protein biosynthesis and altered translation elongation as central processes for heat acclimation and showed that these principles are conserved between the alga and the flowering plant Nicotiana tabacum. Short-term heat exposure resulted in specific translational repression of chlorophyll a-containing core antenna proteins of photosystems I and II. Furthermore, translocation of ribosome nascent chain complexes to thylakoid membranes was affected, as reflected by the increased accumulation of stromal cpSRP54-bound ribosomes. The successful recovery of synthesizing these proteins under prolonged acclimation of nonlethal heat conditions was associated with specific changes of the co-translational protein interaction network, including increased ribosome association of chlorophyll biogenesis enzymes and acclimation factors responsible for complex assembly. We hypothesize that co-translational cofactor binding and targeting might be bottlenecks under heat but become optimized upon heat acclimation to sustain correct co-translational protein complex assembly.


Asunto(s)
Calor , Biosíntesis de Proteínas , Aclimatación , Clorofila A/metabolismo , Cloroplastos/metabolismo , Fotosíntesis/genética , Complejo de Proteína del Fotosistema I/metabolismo
14.
Nucleic Acids Res ; 49(1): 400-415, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33330923

RESUMEN

In plant cells, chloroplast gene expression is predominantly controlled through post-transcriptional regulation. Such fine-tuning is vital for precisely orchestrating protein complex assembly as for the photosynthesis machinery and for quickly responding to environmental changes. While regulation of chloroplast protein synthesis is of central importance, little is known about the degree and nature of the regulatory network, mainly due to challenges associated with the specific isolation of transient ribosome interactors. Here, we established a ribosome affinity purification method, which enabled us to broadly uncover putative ribosome-associated proteins in chloroplasts. Endogenously tagging of a protein of the large or small subunit revealed not only interactors of the holo complex, but also preferential interactors of the two subunits. This includes known canonical regulatory proteins as well as several new proteins belonging to the categories of protein and RNA regulation, photosystem biogenesis, redox control and metabolism. The sensitivity of the here applied screen was validated for various transiently interacting proteins. We further provided evidence for the existence of a ribosome-associated Nα-acetyltransferase in chloroplasts and its ability to acetylate substrate proteins at their N-terminus. The broad set of ribosome interactors underscores the potential to regulate chloroplast gene expression on the level of protein synthesis.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Ribosomas/metabolismo , Espectrometría de Masas en Tándem/métodos , Acetilación , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Fraccionamiento Celular/métodos , Chlamydomonas reinhardtii/genética , Regulación de la Expresión Génica de las Plantas , Separación Inmunomagnética , Espectrometría de Masas , Modelos Moleculares , Acetiltransferasas N-Terminal/aislamiento & purificación , Acetiltransferasas N-Terminal/metabolismo , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Subunidades Ribosómicas Grandes/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo
15.
Science ; 363(6429)2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30792274

RESUMEN

Chloroplasts contain thousands of nucleus-encoded proteins that are imported from the cytosol by translocases in the chloroplast envelope membranes. Proteolytic regulation of the translocases is critically important, but little is known about the underlying mechanisms. We applied forward genetics and proteomics in Arabidopsis to identify factors required for chloroplast outer envelope membrane (OEM) protein degradation. We identified SP2, an Omp85-type ß-barrel channel of the OEM, and CDC48, a cytosolic AAA+ (ATPase associated with diverse cellular activities) chaperone. Both proteins acted in the same pathway as the ubiquitin E3 ligase SP1, which regulates OEM translocase components. SP2 and CDC48 cooperated to bring about retrotranslocation of ubiquitinated substrates from the OEM (fulfilling conductance and motor functions, respectively), enabling degradation of the substrates by the 26S proteasome in the cytosol. Such chloroplast-associated protein degradation (CHLORAD) is vital for organellar functions and plant development.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de Ciclo Celular/metabolismo , Cloroplastos/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteolisis , Ubiquitina/metabolismo , Arabidopsis/genética , Proteínas de Cloroplastos , Proteínas de la Membrana , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
16.
Plant Physiol ; 179(3): 1093-1110, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30651302

RESUMEN

Biochemical processes in chloroplasts are important for virtually all life forms. Tight regulation of protein homeostasis and the coordinated assembly of protein complexes, composed of both imported and locally synthesized subunits, are vital to plastid functionality. Protein biogenesis requires the action of cotranslationally acting molecular chaperones. One such chaperone is trigger factor (TF), which is known to cotranslationally bind most newly synthesized proteins in bacteria, thereby assisting their correct folding and maturation. However, how these processes are regulated in chloroplasts remains poorly understood. We report here functional investigation of chloroplast-localized TF (TIG1) in the green alga (Chlamydomonas reinhardtii) and the vascular land plant Arabidopsis (Arabidopsis thaliana). We show that chloroplastic TIG1 evolved as a specialized chaperone. Unlike other plastidic chaperones that are functionally interchangeable with their prokaryotic counterpart, TIG1 was not able to complement the broadly acting ortholog in Escherichia coli. Whereas general chaperone properties such as the prevention of aggregates or substrate recognition seems to be conserved between bacterial and plastidic TFs, plant TIG1s differed by associating with only a relatively small population of translating ribosomes. Furthermore, a reduction of plastidic TIG1 levels leads to deregulated protein biogenesis at the expense of increased translation, thereby disrupting the chloroplast energy household. This suggests a central role of TIG1 in protein biogenesis in the chloroplast.


Asunto(s)
Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Plantas/fisiología , Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biosíntesis de Proteínas
17.
Biol Chem ; 400(7): 879-893, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-30653464

RESUMEN

Cells are highly adaptive systems that respond and adapt to changing environmental conditions such as temperature fluctuations or altered nutrient availability. Such acclimation processes involve reprogramming of the cellular gene expression profile, tuning of protein synthesis, remodeling of metabolic pathways and morphological changes of the cell shape. Nutrient starvation can lead to limited energy supply and consequently, remodeling of protein synthesis is one of the key steps of regulation since the translation of the genetic code into functional polypeptides may consume up to 40% of a cell's energy during proliferation. In eukaryotic cells, downregulation of protein synthesis during stress is mainly mediated by modification of the translation initiation factors. Prokaryotic cells suppress protein synthesis by the active formation of dimeric so-called 'hibernating' 100S ribosome complexes. Such a transition involves a number of proteins which are found in various forms in prokaryotes but also in chloroplasts of plants. Here, we review the current understanding of these hibernation factors and elaborate conserved principles which are shared between species.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Cloroplastos/fisiología , Fenómenos Fisiológicos de las Plantas , Ribosomas/fisiología , Proteínas Bacterianas/metabolismo , Regulación hacia Abajo , Firmicutes/genética , Proteínas de Plantas/metabolismo , Biosíntesis de Proteínas
18.
ACS Synth Biol ; 7(9): 2074-2086, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30165733

RESUMEN

Microalgae are regarded as promising organisms to develop innovative concepts based on their photosynthetic capacity that offers more sustainable production than heterotrophic hosts. However, to realize their potential as green cell factories, a major challenge is to make microalgae easier to engineer. A promising approach for rapid and predictable genetic manipulation is to use standardized synthetic biology tools and workflows. To this end we have developed a Modular Cloning toolkit for the green microalga Chlamydomonas reinhardtii. It is based on Golden Gate cloning with standard syntax, and comprises 119 openly distributed genetic parts, most of which have been functionally validated in several strains. It contains promoters, UTRs, terminators, tags, reporters, antibiotic resistance genes, and introns cloned in various positions to allow maximum modularity. The toolkit enables rapid building of engineered cells for both fundamental research and algal biotechnology. This work will make Chlamydomonas the next chassis for sustainable synthetic biology.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Fotosíntesis , Plásmidos/metabolismo , Biología Sintética/métodos , Biotecnología , Chlamydomonas reinhardtii/genética , Expresión Génica , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Plásmidos/genética , Regiones Promotoras Genéticas
19.
Nat Plants ; 4(8): 564-575, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30061751

RESUMEN

Chloroplast gene expression is a fascinating and highly regulated process, which was mainly studied on specific genes in a few model organisms including the unicellular green alga Chlamydomonas (Chlamydomonas reinhardtii) and the embryophyte (land) plants tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). However, a direct plastid genome-wide interspecies comparison of chloroplast gene expression that includes translation was missing. We adapted a targeted chloroplast ribosome profiling approach to quantitatively compare RNA abundance and translation output between Chlamydomonas, tobacco and Arabidopsis. The re-analysis of established chloroplast mutants confirmed the capability of the approach by detecting known as well as previously undetected translation defects (including the potential photosystem II assembly-dependent regulation of PsbH). Systematic comparison of the algal and land plant wild-type gene expression showed that, for most genes, the steady-state translation output is highly conserved among the three species, while the levels of transcript accumulation are more distinct. Whereas in Chlamydomonas transcript accumulation and translation output are closely balanced, this correlation is less obvious in embryophytes, indicating more pronounced translational regulation. Altogether, this suggests that green algae and land plants evolved different strategies to achieve conserved levels of protein synthesis.


Asunto(s)
Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , Nicotiana/genética , ARN de Planta/metabolismo , Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Secuencia Conservada , Biosíntesis de Proteínas , Ribosomas/metabolismo , Ribosomas/fisiología , Nicotiana/metabolismo
20.
Plant Cell ; 29(7): 1726-1747, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28684427

RESUMEN

To extend our understanding of chloroplast protein import and the role played by the import machinery component Tic40, we performed a genetic screen for suppressors of chlorotic tic40 knockout mutant Arabidopsis thaliana plants. As a result, two suppressor of tic40 loci, stic1 and stic2, were identified and characterized. The stic1 locus corresponds to the gene ALBINO4 (ALB4), which encodes a paralog of the well-known thylakoid protein targeting factor ALB3. The stic2 locus identified a previously unknown stromal protein that interacts physically with both ALB4 and ALB3. Genetic studies showed that ALB4 and STIC2 act together in a common pathway that also involves cpSRP54 and cpFtsY. Thus, we conclude that ALB4 and STIC2 both participate in thylakoid protein targeting, potentially for a specific subset of thylakoidal proteins, and that this targeting pathway becomes disadvantageous to the plant in the absence of Tic40. As the stic1 and stic2 mutants both suppressed tic40 specifically (other TIC-related mutants were not suppressed), we hypothesize that Tic40 is a multifunctional protein that, in addition to its originally described role in protein import, is able to influence downstream processes leading to thylakoid biogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Mutación , Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , ADN Bacteriano , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Inmunoprecipitación/métodos , Proteínas de la Membrana/genética , Chaperonas Moleculares/genética , Plantas Modificadas Genéticamente , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Tilacoides/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...