Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36432374

RESUMEN

An industrial nanocoating process air emissions impact on public health was quantified by using the burden of disease (BoD) concept. The health loss was calculated in Disability Adjusted Life Years (DALYs), which is an absolute metric that enables comparisons of the health impacts of different causes. Here, the health loss was compared with generally accepted risk levels for air pollution. Exposure response functions were not available for Ag nanoform. The health loss for TiO2 nanoform emissions were 0.0006 DALYs per 100,000 persons per year. Moreover, the exposure risk characterization was performed by comparing the ground level air concentrations with framework values. The exposure levels were ca. 3 and 18 times lower than the derived limit values of 0.1 µg-TiO2/m3 and 0.01 µg-Ag/m3 for the general population. The accumulations of TiO2 and Ag nanoforms on the soil top layer were estimated to be up to 85 µg-TiO2/kg and 1.4 µg-Ag/kg which was considered low as compared to measured elemental TiO2 and Ag concentrations. This assessment reveals that the spray coating process air emissions are adequately controlled. This study demonstrated how the BoD concept can be applied to quantify health impacts of nanoform outdoor air emissions from an industrial site.

2.
Toxics ; 10(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36136463

RESUMEN

Effective particle density is a key parameter for assessing inhalation exposure of engineered NPs in occupational environments. In this paper, particle density measurements were carried out using two different techniques: one based on the ratio between mass and volumetric particle concentrations; the other one based on the ratio between aerodynamic and geometric particle diameter. These different approaches were applied to both field- and laboratory-scale atomization processes where the two target NPs (N-doped TiO2, TiO2N and AgNPs capped with a quaternized hydroxyethylcellulose, AgHEC) were generated. Spray tests using TiO2N were observed to release more and bigger particles than tests with AgHEC, as indicated by the measured particle mass concentrations and volumes. Our findings give an effective density of TiO2N particle to be in a similar range between field and laboratory measurements (1.8 ± 0.5 g/cm3); while AgHEC particle density showed wide variations (3.0 ± 0.5 g/cm3 and 1.2 + 0.1 g/cm3 for field and laboratory campaigns, respectively). This finding leads to speculation regarding the composition of particles emitted because atomized particle fragments may contain different Ag-to-HEC ratios, leading to different density values. A further uncertainty factor is probably related to low process emissions, making the subtraction of background concentrations from AgHEC process emissions unreliable.

3.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35159658

RESUMEN

Industrial spray coating processes are known to produce excellent coatings on large surfaces and are thus often used for in-line production. However, they could be one of the most critical sources of worker exposure to ultrafine particles (UFPs). A monitoring campaign at the Witek s.r.l. (Florence, Italy) was deployed to characterize the release of TiO2 NPs doped with nitrogen (TiO2-N) and Ag capped with hydroxyethyl cellulose (AgHEC) during automatic industrial spray-coating of polymethyl methacrylate (PMMA) and polyester. Aerosol particles were characterized inside the spray chamber at near field (NF) and far field (FF) locations using on-line and off-line instruments. Results showed that TiO2-N suspension produced higher particle number concentrations than AgHEC in the size range 0.3-1 µm (on average 1.9 102 p/cm3 and 2.5 101 p/cm3, respectively) after background removing. At FF, especially at worst case scenario (4 nozzles, 800 mL/min flow rate) for TiO2-N, the spray spikes were correlated with NF, with an observed time lag of 1 minute corresponding to a diffusion speed of 0.1 m/s. The averaged ratio between particles mass concentrations in the NF position and inside the spray chamber was 1.7% and 1.5% for TiO2-N and for AgHEC suspensions, respectively. The released particles' number concentration of TiO2-N in the size particles range 0.3-1 µm was comparable for both PMMA and polyester substrates, about 1.5 and 1.6 102 p/cm3. In the size range 0.01-30 µm, the aerosol number concentration at NF for both suspensions was lower than the nano reference values (NRVs) of 16·103 p/cm-3.

4.
Nanomaterials (Basel) ; 12(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35214925

RESUMEN

Spray coatings' emissions impact to the environmental and occupational exposure were studied in a pilot-plant. Concentrations were measured inside the spray chamber and at the work room in Near-Field (NF) and Far-Field (FF) and mass flows were analyzed using a mechanistic model. The coating was performed in a ventilated chamber by spraying titanium dioxide doped with nitrogen (TiO2N) and silver capped by hydroxyethylcellulose (Ag-HEC) nanoparticles (NPs). Process emission rates to workplace, air, and outdoor air were characterized according to process parameters, which were used to assess emission factors. Full-scale production exposure potential was estimated under reasonable worst-case (RWC) conditions. The measured TiO2-N and Ag-HEC concentrations were 40.9 TiO2-µg/m3 and 0.4 Ag-µg/m3 at NF (total fraction). Under simulated RWC conditions with precautionary emission rate estimates, the worker's 95th percentile 8-h exposure was ≤171 TiO2 and ≤1.9 Ag-µg/m3 (total fraction). Environmental emissions via local ventilation (LEV) exhaust were ca. 35 and 140 mg-NP/g-NP, for TiO2-N and Ag-HEC, respectively. Under current situation, the exposure was adequately controlled. However, under full scale production with continuous process workers exposure should be evaluated with personal sampling if recommended occupational exposure levels for nanosized TiO2 and Ag are followed for risk management.

5.
Open Res Eur ; 2: 84, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37645270

RESUMEN

Background: Photocatalytic air purifiers based on nano-titanium dioxide (TiO 2) visible light activation provide an efficient solution for removing and degrading contaminants in air. The potential detachment of TiO 2 particles from the air purifier to indoor air could cause a safety concern. A TiO 2 release potential was measured for one commercially available photocatalytic air purifier "Gearbox Wivactive" to ensure a successful implementation of the photocatalytic air purifying technology. Methods: In this study, the TiO 2 release was studied under laboratory-simulated conditions from a  Gearbox Wivactive consisting of ceramic honeycombs coated with photocatalytic nitrogen doped TiO 2 particles. The TiO 2 particle release factor was measured in scalable units according to the photoactive surface area and volume flow (TiO 2-ng/m 2×m 3). The impact of  Gearbox Wivactive on indoor concentration level under reasonable worst-case conditions was predicted by using the release factor and a well-mixed indoor aerosol model. Results: The instrumentation and experimental setup was not sufficiently sensitive to quantify the emissions from the photoactive surfaces. The upper limit for TiO 2 mass release was <185×10 -3 TiO 2-ng/m 2×m 3. Under realistic conditions the TiO 2 concentration level in a 20 m 3 room ventilated at rate of 0.5 1/h and containing two Gearbox Wivactive units resulted <20×10 -3 TiO 2-ng/m 3. Conclusions: The release potential was quantified for a photocatalytic surface in generalized units that can be used to calculate the emission potential for different photocatalytic surfaces used in various operational conditions. This study shows that the TiO 2 nanoparticle release potential was low in this case and the release does not cause relevant exposure as compared to proposed occupational exposure limit values for nanosized TiO 2. The TiO 2 release risk was adequately controlled under reasonable worst-case operational conditions.

6.
Sci Total Environ ; 809: 151137, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34699823

RESUMEN

Airborne transmission of SARS-CoV-2 has been object of debate in the scientific community since the beginning of COVID-19 pandemic. This mechanism of transmission could arise from virus-laden aerosol released by infected individuals and it is influenced by several factors. Among these, the concentration and size distribution of virus-laden particles play an important role. The knowledge regarding aerosol transmission increases as new evidence is collected in different studies, even if it is not yet available a standard protocol regarding air sampling and analysis, which can create difficulties in the interpretation and application of results. This work reports a systematic review of current knowledge gained by 73 published papers on experimental determination of SARS-CoV-2 RNA in air comparing different environments: outdoors, indoor hospitals and healthcare settings, and public community indoors. Selected papers furnished 77 datasets: outdoor studies (9/77, 11.7%) and indoor studies (68/77. 88.3%). The indoor datasets in hospitals were the vast majority (58/68, 85.3%), and the remaining (10/68, 14.7%) were classified as community indoors. The fraction of studies having positive samples, as well as positivity rates (i.e. ratios between positive and total samples) are significantly larger in hospitals compared to the other typologies of sites. Contamination of surfaces was more frequent (in indoor datasets) compared to contamination of air samples; however, the average positivity rate was lower compared to that of air. Concentrations of SARS-CoV-2 RNA in air were highly variables and, on average, lower in outdoors compared to indoors. Among indoors, concentrations in community indoors appear to be lower than those in hospitals and healthcare settings.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Aerosoles , Humanos , Pandemias , ARN Viral , SARS-CoV-2
7.
Environ Sci Pollut Res Int ; 29(10): 13905-13916, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34599449

RESUMEN

COVID-19 pandemic raised a debate regarding the role of airborne transmission. Information regarding virus-laden aerosol concentrations is still scarce in community indoors and what are the risks for general public and the efficiency of restriction policies. This work investigates, for the first time in Italy, the presence of SARS-CoV-2 RNA in air samples collected in different community indoors (one train station, two food markets, one canteen, one shopping centre, one hair salon, and one pharmacy) in three Italian cities: metropolitan city of Venice (NE of Italy), Bologna (central Italy), and Lecce (SE of Italy). Air samples were collected during the maximum spread of the second wave of pandemic in Italy (November and December 2020). All collected samples tested negative for the presence of SARS-CoV-2, using both real-time RT-PCR and ddPCR, and no significant differences were observed comparing samples taken with and without customers. Modelling average concentrations, using influx of customers' data and local epidemiological information, indicated low values (i.e. < 0.8 copies m-3 when cotton facemasks are used and even lower for surgical facemasks). The results, even if with some limitations, suggest that the restrictive policies enforced could effectively reduce the risk of airborne transmissions in the community indoor investigated, providing that physical distance is respected.


Asunto(s)
Microbiología del Aire , COVID-19 , Pandemias , SARS-CoV-2/aislamiento & purificación , Humanos , Italia , ARN Viral
8.
Nanomaterials (Basel) ; 11(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34947513

RESUMEN

An automatic lab-scaled spray-coating machine was used to deposit Ag nanoparticles (AgNPs) on textile to create antibacterial fabric. The spray process was monitored for the dual purpose of (1) optimizing the process by maximizing silver deposition and minimizing fluid waste, thereby reducing suspension consumption and (2) assessing AgNPs release. Monitoring measurements were carried out at two locations: inside and outside the spray chamber (far field). We calculated the deposition efficiency (E), finding it to be enhanced by increasing the spray pressure from 1 to 1.5 bar, but to be lowered when the number of operating sprays was increased, demonstrating the multiple spray system to be less efficient than a single spray. Far-field AgNPs emission showed a particle concentration increase of less than 10% as compared to the background level. This finding suggests that under our experimental conditions, our spray-coating process is not a critical source of worker exposure.

9.
Nanomaterials (Basel) ; 11(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34361203

RESUMEN

In this paper, we demonstrate the realization process of a pragmatic approach on developing a template for capturing field monitoring data in nanomanufacturing processes. The template serves the fundamental principles which make data scientifically Findable, Accessible, Interoperable and Reusable (FAIR principles), as well as encouraging individuals to reuse it. In our case, the data shepherds' (the guider of data) template creation workflow consists of the following steps: (1) Identify relevant stakeholders, (2) Distribute questionnaires to capture a general description of the data to be generated, (3) Understand the needs and requirements of each stakeholder, (4) Interactive simple communication with the stakeholders for variables/descriptors selection, and (5) Design of the template and annotation of descriptors. We provide an annotated template for capturing exposure field campaign monitoring data, and increase their interoperability, while comparing it with existing templates. This paper enables the data creators of exposure field campaign data to store data in a FAIR way and helps the scientific community, such as data shepherds, by avoiding extensive steps for template creation and by utilizing the pragmatic structure and/or the template proposed herein, in the case of a nanotechnology project (Anticipating Safety Issues at the Design of Nano Product Development, ASINA).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA