Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Intervalo de año de publicación
1.
Food Sci Nutr ; 12(8): 5722-5733, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139927

RESUMEN

Kombucha tea is a traditional beverage originating from China and has recently gained popularity worldwide. Kombucha tea is produced by the fermentation of tea leaves and is characterized by its beneficial properties and varied chemical content produced during the fermentation process, which includes organic acids, amino acids, vitamins, minerals, and other biologically active compounds. Kombucha tea is often consumed as a health drink to combat obesity and inflammation; however, the bioactive effects of kombucha tea have not been thoroughly researched. In this study, we reveal the underlying mechanisms of the beneficial properties of kombucha tea and how they protect against obesity and inflammation by studying Drosophila models. We established an inflammatory Drosophila model by knocking down the lipid storage droplet-1 gene, a human perilipin-1 ortholog. In this model, dysfunction of lipid storage droplet-1 induces inflammation by enhancing the infiltration of hemocytes into adipose tissues, increasing reactive oxygen species production, elevating levels of proinflammatory cytokines, and promoting the differentiation of hemocytes into macrophages. These processes are regulated by the c-Jun N-terminal Kinase (JNK) pathway. Using this unique Drosophila model that mimics mammalian inflammation, we verified the beneficial effects of kombucha tea on reducing tissue inflammation. Our data confirms that kombucha tea effectively improves inflammatory conditions by suppressing the expression of cytokines and proinflammatory responses induced by lipid storage droplet-1 dysfunction. It was found that kombucha tea consumption alleviated the production of reactive oxygen species and activated the JNK signaling pathway, signifying its potential as an anti-inflammatory agent against systemic inflammatory responses connected to the JNK pathway. Kombucha tea reduced triglyceride accumulation by increasing the activity of Brummer (a lipase), thereby promoting lipolysis in third-instar larvae. Therefore, kombucha tea could be developed as a novel, functional beverage to protect against obesity and inflammation. Our study also highlights the potential use of this innovative model to evaluate the effects of bioactive compounds derived from natural products.

2.
Front Pharmacol ; 15: 1410419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193343

RESUMEN

Periodontal disease is more prevalent in patients with diabetes, and it has a negative impact on their quality of life. Inhibiting the infection and inflammation processes that cause periodontal disease can reduce the severity of the disease and chances of serious complications. In this study, we aimed to demonstrate the effectiveness of Clinacanthus nutans extract in reducing the inflammation in gingival fibroblast cells induced by Porphyromonas gingivalis lipopolysaccharide (LPS). Stimulation with LPS under high-glucose conditions led to increased inflammation compared to low-glucose conditions. Treatment of C. nutans extract significantly reduced the expression of these pro-inflammatory cytokines and chemokines. At a concentration of 50 µg/mL, it reduced the relative expression of IL6, IL8, and CXCL10 to 0.51 ± 0.09, 0.6 ± 0.19, and 0.09 ± 0.02, respectively, compared to the non-treatment control, accompanied by a decrease in secreted protein as measured by ELISA. Additionally, application of C. nutans extract markedly suppressed the NF-κB signaling pathway by reducing the phosphorylated form of IκBα, NF-κB p65, and nuclear translocation of NF-κB, along with a decrease in COX2, a key mediator in the inflammatory pathway. Furthermore, analysis of RNA sequencing data indicated that the extract clearly reversed the gene expression changes induced by LPS. This was particularly true for the signaling mediators and inflammatory genes in response to NF-κB, JAK/STAT, and TNF signaling pathways. Our finding highlights the potential of C. nutans extract to alleviate inflammation and suggests its potential as a treatment for periodontal disease in patients with diabetes.

3.
Int J Biol Macromol ; 276(Pt 1): 133496, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986999

RESUMEN

Dengue virus (DENV) infection poses a global health threat, leading to severe conditions with the potential for critical outcomes. Currently, there are no specific drugs available whereas the vaccine does not offer comprehensive protection across all DENV serotypes. Therefore, the development of potential antiviral agents is necessary to reduce the severity risk and interrupt the transmission circuit. The search for effective antiviral agents against DENV has predominantly focused on natural resources, particularly those demonstrating diverse biological activities and high safety profiles. Cyanobacteria and algae including Leptolyngbya sp., Spirulina sp., Chlorella sp., and Sargassum spp., which are prevalent species in Thailand, have been reported for their diverse biological activities and high safety profiles. However, their anti-DENV activity has not been documented. In this study, the screening assay was performed to compare the antiviral activity against DENV of crude polysaccharide and ethanolic extracts derived from 4 species of cyanobacteria and algae in Vero cells. Polysaccharide extracts from Sargassum spp. were the most effective in inhibiting DENV-2 infection under co-infection conditions, where the virus was exposed to the extract at the time of infection. Treatment of the extract significantly reduced the ability of DENV to bind to the host cells to 47.87 ± 3.88 % while treatment upon virus binding step had no antiviral effect suggesting the underlaying mechanism of the extract on interfering virus binding step. Fucoidan, a key bioactive substance in Sargassum polysaccharide, showed to reduce DENV-2 infection to 26.59 ± 5.01 %, 20.46 ± 6.58 % under the co-infection condition in Vero and A549 cells, respectively. In accompanied with Sargassum polysaccharide, fucoidan disturbed the virus binding to the host cells. These findings warrant further development and exploration of the Sargassum-derived polysaccharide, fucoidan, as a promising candidate for combating DENV infections.


Asunto(s)
Antivirales , Virus del Dengue , Dengue , Polisacáridos , Sargassum , Polisacáridos/farmacología , Polisacáridos/química , Virus del Dengue/efectos de los fármacos , Sargassum/química , Antivirales/farmacología , Antivirales/química , Chlorocebus aethiops , Células Vero , Animales , Dengue/tratamiento farmacológico , Dengue/virología , Humanos
4.
PeerJ ; 12: e17490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903886

RESUMEN

Background: Pathogenic bacteria are the cause of most skin diseases, but issues such as resistance and environmental degradation drive the need to research alternative treatments. It is reported that silk cocoon extract possesses antioxidant properties. During silk processing, the degumming of silk cocoons creates a byproduct that contains natural active substances. These substances were found to have inhibitory effects on bacterial growth, DNA synthesis, the pathogenesis of hemolysis, and biofilm formation. Thus, silk cocoon extracts can be used in therapeutic applications for the prevention and treatment of skin pathogenic bacterial infections. Methods: The extract of silk cocoons with pupae (SCP) and silk cocoons without pupae (SCWP) were obtained by boiling with distilled water for 9 h and 12 h, and were compared to silkworm pupae (SP) extract that was boiled for 1 h. The active compounds in the extracts, including gallic acid and quercetin, were determined using high-performance liquid chromatography (HPLC). Furthermore, the total phenolic and flavonoid content in the extracts were investigated using the Folin-Ciocalteu method and the aluminum chloride colorimetric method, respectively. To assess antioxidant activity, the extracts were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Additionally, the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of silk extracts and phytochemical compounds were determined against skin pathogenic bacteria. This study assessed the effects of the extracts and phytochemical compounds on growth inhibition, biofilm formation, hemolysis protection, and DNA synthesis of bacteria. Results: The HPLC characterization of the silk extracts showed gallic acid levels to be the highest, especially in SCP (8.638-31.605 mg/g extract) and SP (64.530 mg/g extract); whereas quercetin compound was only detected in SCWP (0.021-0.031 mg/g extract). The total phenolics and flavonoids in silk extracts exhibited antioxidant and antimicrobial activity. Additionally, SCP at 9 h and 12 h revealed the highest anti-bacterial activity, with the lowest MIC and MBC of 50-100 mg/mL against skin pathogenic bacteria including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Cutibacterium acnes and Pseudomonas aeruginosa. Hence, SCP extract and non-sericin compounds containing gallic acid and quercetin exhibited the strongest inhibition of both growth and DNA synthesis on skin pathogenic bacteria. The suppression of bacterial pathogenesis, including preformed and matured biofilms, and hemolysis activity, were also revealed in SCP extract and non-sericin compounds. The results show that the byproduct of silk processing can serve as an alternative source of natural phenolic and flavonoid antioxidants that can be used in therapeutic applications for the prevention and treatment of pathogenic bacterial skin infections.


Asunto(s)
Antibacterianos , Antioxidantes , Bombyx , Seda , Animales , Bombyx/química , Antioxidantes/farmacología , Antioxidantes/química , Seda/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Biopelículas/efectos de los fármacos , Pupa/efectos de los fármacos , Radicales Libres/metabolismo , Pruebas de Sensibilidad Microbiana , Hemólisis/efectos de los fármacos
5.
Sci Rep ; 14(1): 11914, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789457

RESUMEN

Herpes simplex virus (HSV) is a causative agent of fever blister, genital herpes, and neonatal herpes. Nowadays, edible algae are recognized as health food due to high nutrition content and their many active compounds that are beneficial to health. The purpose of this study is to investigate the inhibitory effects of algal polysaccharide extract from Cladophora spp. against herpes simplex virus type 1 and type 2 on Vero cells. In this study, the structure of polysaccharide extract is presented as S=O and C-O-S of the sulfate group, as identified by the FT-IR technique. The toxicity of algal polysaccharide extract on Vero cells was determined by MTT assay. The algal extract showed low toxicity on the cells, with 50% cytotoxic concentration (CC50) value greater than 5000 µg mL-1. The inhibition of HSV infection by the algal extract was then evaluated on Vero cells using plaque reduction assay. The 50% effective concentration (EC50) values of algal extract exhibited antiviral activity against HSV-1 upon treatment before, during, and after viral adsorption with and without removal of the extract were 70.31, 15.17, > 5000 and 9.78 µg mL-1, respectively. Additionally, the EC50 values of algal extract against HSV-2 upon treatment before, during and after viral adsorption with, and without removal of the extract were 5.85, 2.57, > 5000 and 26.96 µg mL-1, respectively. Moreover, the algal extract demonstrated direct inactivation of HSV-1 and HSV-2 virions as well as inhibitory effect against HSV replication. Accordingly, algal polysaccharide extract containing sulfated polysaccharides showed strong activity against HSV. Therefore, it is proved to be useful to apply Cladophora spp. polysaccharide extract as an anti-HSV agent.


Asunto(s)
Antivirales , Chlorophyta , Herpesvirus Humano 1 , Polisacáridos , Animales , Chlorocebus aethiops , Células Vero , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Antivirales/farmacología , Antivirales/química , Chlorophyta/química , Herpesvirus Humano 1/efectos de los fármacos , Herpes Simple/tratamiento farmacológico , Herpes Simple/virología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Herpesvirus Humano 2/efectos de los fármacos
6.
Insects ; 15(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38392528

RESUMEN

Herpes simplex virus (HSV) is known to cause cold sores and various diseases in humans. Importantly, HSV infection can develop latent and recurrent infections, and it is also known to cause inflammation. These infections are difficult to control, and effective treatment of the disease remains a challenge. Thus, the search for new antiviral and anti-inflammatory agents is a necessity. Melittin is a major peptide that is present in the venom of the honeybee. It possesses a number of pharmacological properties. In this study, the effects of the melittin peptides from A. mellifera (MEL-AM) and A. florea (MEL-AF) against HSV-1 and HSV-2 were evaluated at different stages during the viral multiplication cycle in an attempt to define the mode of antiviral action using plaque reduction and virucidal assays. The results revealed a new finding that melittin at 5 µg/mL demonstrated the highest inhibitory effect on HSV through the direct inactivation of viral particles, and MEL-AF displayed a greater virucidal activity. Moreover, melittin was also observed to interfere with the process of HSV attachment to the host cells. MEL-AM exhibited anti-HSV-1 and anti-HSV-2 effects with EC50 values of 4.90 ± 0.15 and 4.39 ± 0.20 µg/mL, while MEL-AF demonstrated EC50 values of 4.47 ± 0.21 and 3.95 ± 0.61 µg/mL against HSV-1 and HSV-2, respectively. However, non-cytotoxic concentrations of both types of melittin produced only slight degrees of HSV-1 and HSV-2 inhibition after viral attachment, but melittin at 5 µg/mL was able to reduce the plaque size of HSV-2 when compared to the untreated group. In addition, MEL-AM and MEL-AF also exhibited anti-inflammatory activity via the inhibition of nitric oxide production in LPS-stimulated RAW 264.7 macrophage cells, and they were also found to down-regulate the expressions of the iNOS, COX-2 and IL-6 genes. The highest inhibition of IL-6 mRNA expression was found after treatment with 10 µg/mL of MEL-AM and MEL-AF. Therefore, melittin peptides have displayed strong potential to be used as an alternative treatment for HSV infection and inflammatory diseases in the future.

7.
Sci Rep ; 13(1): 19566, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949910

RESUMEN

Clinacanthus nutans (Burm. f.) Lindau has been extensively utilized in Thai folk medicine. However, there has been no prior exploration of its genetic diversity or its correlation with biological activity and phytochemical profiles. Herein, a total of 10 samples of C. nutans were collected from different geographic locations in different environments of Thailand, encompassing Northern, Northeastern, and Central regions. The genetic diversity study using sequence-related amplified polymorphism (SRAP) markers showed that all C. nutans samples were closely related, as indicated by UPGMA cluster analysis. When comparing the biological activities of C. nutans extracts, our findings demonstrated that those sourced from Northern Thailand exhibited the most potent activity in reducing lipopolysaccharide-inducing cell death, as accessed by cell viability assay. Furthermore, they showed remarkable antioxidant and antibacterial activities against Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. High-performance liquid chromatography (HPLC) analysis of phytochemical profiles revealed consistent chromatography peak patterns across all C. nutans extracts. However, they exhibited varying levels of phenolic contents, as judged by the Folin-Ciocalteu assay, which positively correlated with their observed activities. In conclusion, this study highlights the limited genetic variation within C. nutans population in Thailand. Furthermore, it underscores the association between the biological activity and the total phenolic contents which might be mainly impacted by environmental conditions.


Asunto(s)
Acanthaceae , Antioxidantes , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Medicina Tradicional , Fitoquímicos/farmacología , Variación Genética , Tailandia , Acanthaceae/química
8.
Antibiotics (Basel) ; 12(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37760739

RESUMEN

Zea mays L. Poaceae stigma (corn silk, CS) is a byproduct of agricultural waste and is used as a traditional herb in many countries. CS is rich in chemical compounds known to benefit human health and is also a remedy for infectious diseases and has anti-proliferative effects on human cancer cell lines. In the present study, CS extract has been evaluated for its antioxidant, antibacterial, and anti-tyrosinase activities and its phytochemical composition. The higher total phenolic and flavonoid contents were found in the ethanolic extract of corn silk (CSA), at 28.27 ± 0.86 mg gallic acid equivalent/g extract and 4.71 ± 0.79 mg quercetin equivalent/g extract, respectively. Moreover, the antioxidant content of CSA was found at 5.22 ± 0.87 and 13.20 ± 0.42 mg gallic acid equivalent/g extract using DPPH and reducing power assays. Furthermore, the ethanolic extract of corn silk showed tyrosinase inhibition with an IC50 value of 12.45 µg/mL. The bacterial growth inhibition of CSA was tested using agar disc diffusion and broth dilution assays against Cutibacterium acnes and Staphylococcus epidermidis. It was found that CSA inhibited C. acnes and S. epidermidis with an inhibition zone of 11.7 ± 1.2 and 9.3 ± 0.6 mm, respectively. Moreover, the CSA showed MIC/MBC of 15.625 mg/mL against C. acnes. The following phytochemical compounds were detected in CSA: cardiac glycosides; n-hexadecanoic acid; hexadecanoic acid, ethyl ester; oleic acid; and 9,12-octadecadienoic acid, ethyl ester. After the corn silk cream product was formulated, the product demonstrated stability without phase separation. This research is beneficial for promoting effective ways to use agricultural waste while utilizing the antioxidant, anti-tyrosinase, and antibacterial activities of corn silk. Moreover, the use of technology and innovation to obtain high-value CS extract will benefit the development of commercial cosmetic products by providing safe, natural, and quality ingredients to the consumer.

9.
Molecules ; 28(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687052

RESUMEN

Secretory phospholipase B1 (PLB1) and biofilms act as microbial virulence factors and play an important role in pulmonary cryptococcosis. This study aims to formulate the ethanolic extract of propolis-loaded niosomes (Nio-EEP) and evaluate the biological activities occurring during PLB1 production and biofilm formation of Cryptococcus neoformans. Some physicochemical characterizations of niosomes include a mean diameter of 270 nm in a spherical shape, a zeta-potential of -10.54 ± 1.37 mV, and 88.13 ± 0.01% entrapment efficiency. Nio-EEP can release EEP in a sustained manner and retains consistent physicochemical properties for a month. Nio-EEP has the capability to permeate the cellular membranes of C. neoformans, causing a significant decrease in the mRNA expression level of PLB1. Interestingly, biofilm formation, biofilm thickness, and the expression level of biofilm-related genes (UGD1 and UXS1) were also significantly reduced. Pre-treating with Nio-EEP prior to yeast infection reduced the intracellular replication of C. neoformans in alveolar macrophages by 47%. In conclusion, Nio-EEP mediates as an anti-virulence agent to inhibit PLB1 and biofilm production for preventing fungal colonization on lung epithelial cells and also decreases the intracellular replication of phagocytosed cryptococci. This nano-based EEP delivery might be a potential therapeutic strategy in the prophylaxis and treatment of pulmonary cryptococcosis in the future.


Asunto(s)
Antifúngicos , Biopelículas , Cryptococcus neoformans , Proteínas Fúngicas , Lisofosfolipasa , Macrófagos Alveolares , Própolis , Humanos , Biopelículas/efectos de los fármacos , Línea Celular Tumoral , Criptococosis/prevención & control , Criptococosis/terapia , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/patogenicidad , Etanol/química , Proteínas Fúngicas/antagonistas & inhibidores , Liposomas , Enfermedades Pulmonares Fúngicas/prevención & control , Enfermedades Pulmonares Fúngicas/terapia , Lisofosfolipasa/antagonistas & inhibidores , Macrófagos Alveolares/microbiología , Própolis/química , Própolis/farmacología , Virulencia/efectos de los fármacos , Factores de Virulencia/antagonistas & inhibidores , Antifúngicos/química , Antifúngicos/farmacología
10.
PeerJ ; 11: e15827, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583916

RESUMEN

Background: Mucus derived from many land snails has been extensively utilised in medicine and cosmetics, but some biological activities of the mucus need to be well documented. Nevertheless, most mucus is obtained from land snails, while mucus from freshwater snails has yet to be attended. Methods: This study aims to determine and compare mucus's antioxidant and anti-inflammatory activities from the land snail Lissachatina fulica and the freshwater snail Pomacea canaliculata. ABTS, DPPH, reducing power and total antioxidant activity assays were used to evaluate the antioxidant capacity. Inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 cells was performed to determine the anti-inflammatory activity. Additionally, the histochemical analysis of mucous cells in each snail foot was conducted to compare the distribution of mucous cells and types of mucins using periodic acid-Schiff and Alcian blue staining. Results: Mucus from L. fulica and P. canaliculata exhibited antioxidant and anti-inflammatory activities in different parameters. L. fulica mucus has higher total antioxidant (44.71 ± 2.11 mg AAE/g) and nitric oxide inhibitory activities (IC50 = 9.67 ± 0.31 µg/ml), whereas P. canaliculata mucus has better-reducing power activity (43.63 ± 2.47 mg AAE/g) and protein denaturation inhibition (IC50 = 0.60 ± 0.03 mg/ml). Histochemically, both species' dorsal and ventral foot regions contained neutral and acid mucins in different quantities. In the dorsal region, the neutral mucins level in L. fulica (16.64 ± 3.46%) was significantly higher than that in P. canaliculata (11.19 ± 1.50%), while the acid mucins level showed no significant difference between species. Levels of both mucins in the ventral foot region of L. fulica (15.08 ± 3.97% and 10.76 ± 3.00%, respectively) were significantly higher than those of P. canaliculata (2.25 ± 0.48% and 2.71 ± 0.56%, respectively). This study revealed scientific evidence of the biological capacity of mucus from L. fulica and P. canaliculata as well as provided helpful information on the region of the foot which produces effective mucus.


Asunto(s)
Antioxidantes , Óxido Nítrico , Animales , Antioxidantes/farmacología , Caracoles , Moco
11.
Nanomaterials (Basel) ; 13(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513152

RESUMEN

Harmful algal blooms impact human welfare and are a global concern. Sargassum spp., a type of algae or seaweed that can potentially bloom in certain regions of the sea around Thailand, exhibits a noteworthy electron capacity as the sole reducing and stabilizing agent, which suggests its potential for mediating nanoparticle composites. This study proposes an eco-friendly microwave-assisted biosynthesis (MAS) method to fabricate silver nanoparticles coated with Sargassum aqueous extract (Ag/AgCl-NPs-ME). Ag/AgCl-NPs-ME were successfully synthesized in 1 min using a 20 mM AgNO3 solution without additional hazardous chemicals. UV-visible spectroscopy confirmed their formation through a surface plasmon resonance band at 400-500 nm. XRD and FTIR analyses verified their crystalline nature and involvement of organic molecules. TEM and SEM characterization showed well-dispersed Ag/AgCl-NPs-ME with an average size of 36.43 nm. The EDS results confirmed the presence of metallic Ag+ and Cl- ions. Ag/AgCl-NPs-ME exhibited significant antioxidant activity against free radicals (DPPH, ABTS, and FRAP), suggesting their effectiveness. They also inhibited enzymes (tyrosinase and ACE) linked to diseases, indicating therapeutic potential. Importantly, the Ag/AgCl-NPs-ME displayed remarkable cytotoxicity against cancer cells (A375, A549, and Caco-2) while remaining non-toxic to normal cells. DNA ladder and TUNEL assays confirmed the activation of apoptosis mechanisms in cancer cells after a 48 h treatment. These findings highlight the versatile applications of Ag/AgCl-NPs-ME in food, cosmetics, pharmaceuticals, and nutraceuticals.

12.
Molecules ; 28(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298871

RESUMEN

The white mulberry (Morus alba L.) is widely used as a medicinal plant in Asia. In this study, the bioactive compounds of ethanolic extracts of white mulberry leaves from the Sakon Nakhon and Buriram cultivars were evaluated. The ethanolic extracts of mulberry leaves from the Sakon Nakhon cultivar showed the highest total phenolic content of 49.68 mg GAE/g extract and antioxidant activities of 4.38 mg GAE/g extract, 4.53 mg TEAC/g extract, and 92.78 mg FeSO4/g extract using 2,2 diphenyl-1-picrylhydrazyl (DPPH), 2,20-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays, respectively. The resveratrol and oxyresveratrol compounds in mulberry leaves were also investigated by high-performance liquid chromatography (HPLC). The mulberry leaf extracts from the Sakon Nakhon and Buriram cultivars showed oxyresveratrol contents of 1.20 ± 0.04 mg/g extract and 0.39 ± 0.02 mg/g extract, respectively, whereas resveratrol was not detected. It was also found that the potent anti-inflammatory properties of mulberry leaf extracts and its compounds, resveratrol and oxyresveratrol, suppressed the LPS-stimulated inflammatory responses in RAW 264.7 macrophage cells by significantly reducing nitric oxide production in a concentration-dependent manner. These compounds further inhibited interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production and suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophage cells. Therefore, it is established that mulberry leaf extract and its bioactive compounds contribute to its anti-inflammatory activity.


Asunto(s)
Antioxidantes , Morus , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/química , Lipopolisacáridos , Tailandia , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células RAW 264.7 , Macrófagos , Resveratrol , Morus/química , Hojas de la Planta
13.
Antibiotics (Basel) ; 12(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36978416

RESUMEN

Clinacanthus nutans is widely used as a traditional medicine in Thailand and other countries in Southeast Asia. Although its effectiveness is well documented, its therapeutic use is limited to the treatment of only a few diseases; mostly it is used as an anti-viral agent against varicella-zoster and herpes simplex virus infections. Herein, we demonstrate the therapeutic activity of C. nutans extracts in lowering inflammation in a model of bovine mastitis caused by bacterial infection. Lipopolysaccharide (LPS), a gram-negative bacterial component, caused inflammation activation in bovine endothelial cells (CPAE) through the upregulation of proinflammatory cytokines (IL6 and IL1ß) and chemokines (CXCL3 and CXCL8) gene expression, partially leading to cell death. Treatment with C. nutans crude extract significantly diminished these responses in a dose-dependent manner. The solvent fractionation of C. nutans extract revealed that the ethyl acetate (C4H8O2) fractions had a high potential to protect against cell death and diminished IL1ß, IL6, CXCL3, and CXCL8 levels to less than 0.45 folds relative to the LPS-treated control. Glyceryl 1,3-distearate (C39H76O5) was identified as a bioactive compound responsible for the anti-inflammation activity but not the anti-cell death activity of C. nutans extract. This study highlighted the efficiency of C. nutans extracts as an alternative therapeutic option for the natural-product sustainable development of bovine mastitis treatment.

14.
Toxins (Basel) ; 15(2)2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36828404

RESUMEN

This study describes an emetic food-borne intoxication associated with a Bacillus cereus group species and the characterization of the bacterial isolates from the incident in aspects of molecular tying, genetic factors, cytotoxicity, and pathogenic mechanisms relating to emetic illness. Through the polyphasic identification approach, all seven isolates obtained from food and clinical samples were identified as Bacillus thuringiensis. According to multilocus sequence typing (MLST) analysis, intraspecific diversity was found within the B. thuringiensis isolates. Four allelic profiles were found, including two previously known STs (ST8 and ST15) and two new STs (ST2804 and ST2805). All isolates harbored gene fragments located in the cereulide synthetase (ces) gene cluster. The heat-treated culture supernatants of three emetic B. thuringiensis isolates, FC2, FC7, and FC8, caused vacuolation and exhibited toxicity to Caco-2 cells, with CC50 values of 56.57, 72.17, and 79.94 µg/mL, respectively. The flow cytometry with the Annexin V/PI assay revealed both apoptosis and necrosis mechanisms, but necrosis was the prominent mechanism that caused Caco-2 cell destruction by FC2, the most toxic isolate.


Asunto(s)
Bacillus thuringiensis , Toxinas Bacterianas , Depsipéptidos , Humanos , Toxinas Bacterianas/genética , Bacillus thuringiensis/genética , Eméticos , Bacillus cereus/genética , Tipificación de Secuencias Multilocus , Virulencia , Células CACO-2 , Necrosis , Depsipéptidos/genética , Microbiología de Alimentos
15.
Molecules ; 28(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770665

RESUMEN

Royal jelly is a nutritious substance produced by the hypopharyngeal and mandibular glands of honeybees. Royal jelly possesses many attractive and beneficial properties which make it an ideal component in medical and pharmaceutical products. The antibacterial, antioxidant, and anti-inflammatory activities of royal jelly from honeybees (Apis mellifera) were determined in this study. Moreover, the total phenolic and flavonoid contents of the royal jelly were also evaluated. The effects of royal jelly on growth inhibition against skin pathogenic bacteria, including Cutibacterium acnes, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Corynebacterium spp., were investigated by the agar well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were further determined by the broth dilution method. The results indicated that royal jelly showed antibacterial activity by inhibiting the growth of Gram-positive pathogenic bacteria, while the effectiveness decreased against Gram-negative bacteria. Interestingly, royal jelly from Lamphun (RJ-LP1), and Chiang Mai (RJ-CM1), presented high inhibitory efficacy against C. acnes, MRSA, and S. aureus within 4 h by a time killing assay. Furthermore, the anti-inflammatory properties of royal jelly were tested using RAW264.7 macrophage cells, and results revealed that RJ-LP1 and RJ-CM1 could reduce nitric oxide (NO) production and suppress iNOS gene expression. After testing the antioxidant activity, RJ-CM1 and RJ-CM2 of royal jelly from Chiang Mai had the highest level. Additionally, RJ-CM1 also showed the highest total phenolic and flavonoid content. These findings have brought forward new knowledge of the antibacterial, antioxidant, and anti-inflammatory properties of royal jelly, which will improve clinical and pharmaceutical uses of royal jelly as an alternative therapy for bacterial infections, and also as a dietary supplement product.


Asunto(s)
Antioxidantes , Staphylococcus aureus Resistente a Meticilina , Animales , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Abejas , Ácidos Grasos/farmacología , Ácidos Grasos/metabolismo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Staphylococcus aureus , Tailandia , Piel , Ratones , Línea Celular
16.
Antioxidants (Basel) ; 11(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36552645

RESUMEN

Cyanobacteria are rich in phytochemicals, which have beneficial impacts on the prevention of many diseases. This study aimed to comprehensively characterize phytochemicals and evaluate multifunctional bioactivities in the ethanolic extract of the cyanobacterium Leptolyngbya sp. KC45. Results found that the extract mainly contained chlorophylls, carotenoids, phenolics, and flavonoids. Through LC-ESI-QTOF-MS/MS analysis, 38 phenolic compounds with promising bioactivities were discovered, and a higher diversity of flavonoids was found among the phenolic compounds identified. The extract effectively absorbed the harmful UV rays and showed high antioxidant activity on DPPH, ABTS, and PFRAP. The extract yielded high-efficiency inhibitory effects on enzymes (tyrosinase, collagenase, ACE, and α-glucosidase) related to diseases. Interestingly, the extract showed a strong cytotoxic effect on cancer cells (skin A375, lung A549, and colon Caco-2), but had a much smaller effect on normal cells, indicating a satisfactory level of safety for the extract. More importantly, the combination of the DNA ladder assay and the TUNEL assay proved the appearance of DNA fragmentation in cancer cells after a 48 h treatment with the extract, confirming the apoptosis mechanisms. Our findings suggest that cyanobacterium extract could be potentially used as a functional ingredient for various industrial applications in foods, cosmetics, pharmaceuticals, and nutraceuticals.

17.
Molecules ; 27(23)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36500633

RESUMEN

The stem bark of Holoptelea integrifolia (Roxb.) Planch. has been applied for the treatment of human cutaneous diseases as well as canine demodicosis in several countries. However, no detailed mechanistic studies have been reported to support their use. In this study, thin-layer chromatography and gas chromatography were used to screen phytochemicals from the fresh stem bark extract of H. integrifolia. We found the two major bioactive compounds, friedelin and lupeol, and their activity on wound healing was further investigated in keratinocytes. Both bioactive compounds significantly reduced wound area and increased keratinocyte migration by increasing matrix metalloproteinases-9 production. Subsequently, we found that the mRNA gene expressions of cadherin 1 and desmoglobin 1 significantly decreased, whereas the gene expression involved in keratinocyte proliferation and homeostasis (keratin-17) increased in compound-treated human immortalized keratinocytes cells. The expression of inflammatory genes (cyclooxygenase-2 and inducible nitric oxide synthase) and pro-inflammatory cytokine genes (tumor necrosis factor-alpha and interleukin-6) was reduced by treatment with n-hexane extract of H. integrifolia and its bioactive compounds. Our results revealed that H. integrifolia extract and its bioactive compounds, friedelin and lupeol, exhibit wound-healing activity with anti-inflammatory properties, mediated by regulating the gene expression involved in skin re-epithelialization.


Asunto(s)
Extractos Vegetales , Triterpenos , Perros , Animales , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ulmaceae/química , Cicatrización de Heridas , Queratinocitos , Antiinflamatorios/farmacología , Triterpenos/farmacología
18.
Microorganisms ; 10(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36363739

RESUMEN

Hydrogen sulfide (H2S) is a toxic and corrosive component that commonly occurs in biogas. In this study, H2S removal from swine-waste biogas using sulfur-oxidizing Paracoccus versutus CM1 immobilized in porous glass (PG) and polyurethane foam (PUF) biofilters was investigated. Bacterial compositions in the biofilters were also determined using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The biofilters were first tested on a laboratory scale under three space velocities (SV): 20, 30, and 40 h−1. Within 24 h, at an SV of 20 h−1, PG and PUF biofilters immobilized with P. versutus CM1 removed 99.5% and 99.7% of H2S, respectively, corresponding to the elimination capacities (EC) of 83.5 and 86.2 gm−3 h−1. On a pilot scale, with the horizontal PG-P. versutus CM1 biofilter operated at an SV of 30 h−1, a removal efficiency of 99.7% and a maximum EC of 113.7 gm−3 h−1 were achieved. No reduction in methane content in the outlet biogas was observed under these conditions. The PCR-DGGE analysis revealed that Paracoccus, Acidithiobacillus, and Thiomonas were the predominant bacterial genera in the biofilters, which might play important roles in H2S removal. This PG−P. versutus CM1 biofiltration system is highly efficient for H2S removal from swine-waste biogas.

19.
Nutrients ; 14(9)2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35565872

RESUMEN

Rice is one of the most important food crops in many countries, with nutritional value and health benefits. In this study, the ethanolic and aqueous extracts of red jasmine rice from Chiang Mai, Thailand were examined for their anthocyanins and phenolic contents. The antioxidant and antiviral activity against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), as well as anticancer activity, were investigated. The total anthocyanins content of 708.03 ± 11.56 mg Cy-3-glc equivalent/g extract, determined from the ethanolic extract, was higher than the aqueous extract. However, the aqueous extract showed the highest total phenolic compound of 81.91 ± 0.51 mg GAE/g extract. In addition, the ethanolic extract demonstrated higher antioxidant activity than aqueous extract using DPPH, ABTS, and FRAP assays by 28.91 ± 3.26 mg GAE/g extract, 189.45 ± 11.58 mg 24 TEAC/g extract, and 3292.46 ± 259.64 g FeSO4/g extract, respectively. In the antiviral assay, it was found that the ethanolic extract of red jasmine rice could inhibit HSV-1 more effectively than HSV-2 when treated before, during, and after the viral attachment on Vero cells, with 50% effective doses of 227.53 ± 2.41, 189.59 ± 7.76, and 192.62 ± 2.40 µg/mL, respectively. The extract also demonstrated the highest reduction of HSV-1 particles at 4 h after treatment and the inhibition of HSV-1 replication. The ethanolic extract exhibited a higher toxicity level than the aqueous extract, as well as the potential to induce DNA fragmentation by intrinsic and extrinsic apoptosis pathways on the Caco-2 cells. These findings suggest that red jasmine rice extract demonstrates nutritional value and biological activity on HSV, free radicals, and cancer cell inhibition.


Asunto(s)
Herpesvirus Humano 1 , Jasminum , Neoplasias , Oryza , Animales , Antocianinas/farmacología , Antioxidantes/farmacología , Antivirales/farmacología , Células CACO-2 , Chlorocebus aethiops , Etanol/farmacología , Radicales Libres/farmacología , Herpesvirus Humano 2/fisiología , Humanos , Fenoles/farmacología , Extractos Vegetales/farmacología , Células Vero
20.
Foods ; 11(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35407020

RESUMEN

Probiotics are increasingly used as functional food ingredients. The objectives of this study were to isolate and characterise probiotic bacteria from dairy and fermented foods and to use a selected strain for the production of probiotic chèvre cheese. Tolerance to acid (pH 2.0) and bile salt (0.4% (w/v)) were first investigated, and then other probiotic properties were determined. Out of 241 isolates, 35 showed high tolerance to acid and bile salt, and 6 were chosen for further characterisation. They were Lactobacillus plantarum and L. fermentum, and possessed antibacterial activities against foodborne pathogens such as Bacillus cereus, Staphylococcus aureus, Salmonella enterica and Escherichia coli O157:H7. L. plantarum (isolate AD73) showed the highest percentage of adhesion (81.74 ± 0.16%) and was nontoxic to Caco-2 cells at a concentration of 108 CFU/mL. This isolate was therefore selected for the production of probiotic chèvre cheese from goat's milk and was prepared in a lyophilised form with a concentration of probiotic culture of 8.6 log CFU/g. The cheese had a shelf life of 8 days. On the expiry date, the probiotic, the starter and the yeast contents were 7.56 ± 0.05, 7.81 ± 0.03 and 5.64 log CFU/g, respectively. The level of the probiotics in this chèvre cheese was still sufficiently high to warrant its being a probiotic cheese.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA