Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(17): 177002, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172233

RESUMEN

Current-biased Josephson junctions exhibit hysteretic transitions between dissipative and superconducting states as characterized by switching and retrapping currents. Here, we develop a theory for diodelike effects in the switching and retrapping currents of weakly damped Josephson junctions. We find that while the diodelike behavior of switching currents is rooted in asymmetric current-phase relations, nonreciprocal retrapping currents originate in asymmetric quasiparticle currents. These different origins also imply distinctly different symmetry requirements. We illustrate our results by a microscopic model for junctions involving a single magnetic atom. Our theory provides significant guidance in identifying the microscopic origin of nonreciprocities in Josephson junctions.

2.
Nature ; 615(7953): 628-633, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890238

RESUMEN

Current flow in electronic devices can be asymmetric with bias direction, a phenomenon underlying the utility of diodes1 and known as non-reciprocal charge transport2. The promise of dissipationless electronics has recently stimulated the quest for superconducting diodes, and non-reciprocal superconducting devices have been realized in various non-centrosymmetric systems3-10. Here we investigate the ultimate limits of miniaturization by creating atomic-scale Pb-Pb Josephson junctions in a scanning tunnelling microscope. Pristine junctions stabilized by a single Pb atom exhibit hysteretic behaviour, confirming the high quality of the junctions, but no asymmetry between the bias directions. Non-reciprocal supercurrents emerge when inserting a single magnetic atom into the junction, with the preferred direction depending on the atomic species. Aided by theoretical modelling, we trace the non-reciprocity to quasiparticle currents flowing by means of electron-hole asymmetric Yu-Shiba-Rusinov states inside the superconducting energy gap and identify a new mechanism for diode behaviour in Josephson junctions. Our results open new avenues for creating atomic-scale Josephson diodes and tuning their properties through single-atom manipulation.

3.
Sci Rep ; 7(1): 873, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28408763

RESUMEN

Liquid phase crystallized silicon on glass with a thickness of (10-40) µm has the potential to reduce material costs and the environmental impact of crystalline silicon solar cells. Recently, wafer quality open circuit voltages of over 650 mV and remarkable photocurrent densities of over 30 mA/cm2 have been demonstrated on this material, however, a low fill factor was limiting the performance. In this work we present our latest cell progress on 13 µm thin poly-crystalline silicon fabricated by the liquid phase crystallization directly on glass. The contact system uses passivated back-side silicon hetero-junctions, back-side KOH texture for light-trapping and interdigitated ITO/Ag contacts. The fill factors are up to 74% and efficiencies are 13.2% under AM1.5 g for two different doping densities of 1 · 1017/cm3 and 2 · 1016/cm3. The former is limited by bulk and interface recombination, leading to a reduced saturation current density, the latter by series resistance causing a lower fill factor. Both are additionally limited by electrical shading and losses at grain boundaries and dislocations. A small 1 × 0.1 cm2 test structure circumvents limitations of the contact design reaching an efficiency of 15.9% clearly showing the potential of the technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...