Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1412170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933464

RESUMEN

Introduction: Over the course of four consecutive years, a comparative study, for the first time, was carried out to assess their growth characteristics, vegetative and productive performances. Material: Micropropagated, grafted on not suckering rootstock and own-rooted plants by layering from three Italian hazelnut (Corylus avellana L.) cultivars were established in the same orchard and environmental condition. Results: We found that the micropropagated plants, regardless of the variety considered, even being smaller than the other plants at the beginning of the plantation, reached similar sizes as the other plants after four growing seasons. Furthermore, micropropagated plants exhibited greater uniformity in growth compared to grafted ones, while own-rooted plants displayed more variability. No significant differences in yield performance and canopy volume were observed among the three propagation methods. These results suggest that the in vitro propagation technique, even in hazelnut, allows standardizing the plant material while preserving cultivar characteristics. Finally, in vitro propagation as well as grafting can be safely recommended for the cultivation of hazelnut cultivars.

2.
J Cell Mol Med ; 28(6): e18161, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445787

RESUMEN

Cisplatin is an antimitotic drug able to cause acute and chronic gastrointestinal side effects. Acute side effects are attributable to mucositis while chronic ones are due to neuropathy. Cisplatin has also antibiotic properties inducing dysbiosis which enhances the inflammatory response, worsening local damage. Thus, a treatment aimed at protecting the microbiota could prevent or reduce the toxicity of chemotherapy. Furthermore, since a healthy microbiota enhances the effects of some chemotherapeutic drugs, prebiotics could also improve this drug effectiveness. We investigated whether chronic cisplatin administration determined morphological and functional alterations in mouse proximal colon and whether a diet enriched in prebiotics had protective effects. The results showed that cisplatin caused lack of weight gain, increase in kaolin intake, decrease in stool production and mucus secretion. Prebiotics prevented increases in kaolin intake, changes in stool production and mucus secretion, but had no effect on the lack of weight gain. Moreover, cisplatin determined a reduction in amplitude of spontaneous muscular contractions and of Connexin (Cx)43 expression in the interstitial cells of Cajal, changes that were partially prevented by prebiotics. In conclusion, the present study shows that daily administration of prebiotics, likely protecting the microbiota, prevents most of the colonic cisplatin-induced alterations.


Asunto(s)
Cisplatino , Prebióticos , Animales , Ratones , Cisplatino/efectos adversos , Caolín , Aumento de Peso , Colon
3.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339131

RESUMEN

Glucagon-like peptide-2 (GLP-2) has been reported to influence gastrointestinal motor responses, exerting a modulatory role on enteric neurotransmission. To our knowledge, no data on GLP-2 effects on the motility of the isolated ileum are available; therefore, we investigated whether GLP-2 affects the contractile activity of mouse ileal preparations and the neurotransmitters engaged. Ileal preparations showed tetrodotoxin (TTX)- and atropine-insensitive spontaneous contractile activity, which was unaffected by the nitric oxide synthesis inhibitor, L-NNA. GLP-2 depressed the spontaneous contractility, an effect that was abolished by TTX or L-NNA and not influenced by atropine. Electrical field stimulation induced TTX- and atropine-sensitive contractile responses, which were reduced in amplitude by GLP-2 even in the presence of L-NNA. Immunohistochemical results showed a significant increase in nNOS-positive fibers in the ileal muscle wall and a significant decrease in ChAT-positive myenteric neurons in GLP-2-exposed preparations. The present results offer the first evidence that GLP-2 acts on ileal preparations. The hormone appears to depress ileal contractility through a dual opposite modulatory effect on inhibitory nitrergic and excitatory cholinergic neurotransmission. From a physiological point of view, it could be hypothesized that GLP-2 inhibitory actions on ileal contractility can increase transit time, facilitating nutrient absorption.


Asunto(s)
Péptido 2 Similar al Glucagón , Transmisión Sináptica , Ratones , Animales , Contracción Muscular/fisiología , Nitroarginina/farmacología , Íleon , Colinérgicos/farmacología , Derivados de Atropina/farmacología , Estimulación Eléctrica
4.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108603

RESUMEN

Irritable Bowel syndrome (IBS) is a highly widespread gastrointestinal disorder whose symptomatology mainly affect the large intestine. Among the risk factors, psychosocial stress is the most acknowledged. The repeated water avoidance stress (rWAS) is considered an animal model of psychosocial stress that is capable of mimicking IBS. Otilonium bromide (OB), which is orally administered, concentrates in the large bowel and controls most of the IBS symptoms in humans. Several reports have shown that OB has multiple mechanisms of action and cellular targets. We investigated whether the application of rWAS to rats induced morphological and functional alterations of the cholinergic neurotransmission in the distal colon and whether OB prevented them. The results demonstrated that rWAS affects cholinergic neurotransmission by causing an increase in acid mucin secretion, in the amplitude of electrically evoked contractile responses, abolished by atropine, and in the number of myenteric neurons expressing choline acetyltransferase. OB counteracted these changes and also showed an intrinsic antimuscarinic effect on the post-synaptic muscular receptors. We assume that the rWAS consequences on the cholinergic system are linked to corticotrophin-releasing factor-1 (CRF1) receptor activation by the CRF hypothalamic hormone. OB, by interfering with the CFR/CRFr activation, interrupted the cascade events responsible for the changes affecting the rWAS rat colon.


Asunto(s)
Síndrome del Colon Irritable , Humanos , Ratas , Animales , Colon , Antagonistas Muscarínicos/farmacología , Receptores de Hormona Liberadora de Corticotropina , Agua/farmacología
5.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576155

RESUMEN

It is known that nitric oxide (NO) plays a key physiological role in the control of gastrointestinal (GI) motor phenomena. In this respect, NO is considered as the main non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmitter responsible for smooth muscle relaxation. Moreover, many substances (including hormones) have been reported to modulate NO production leading to changes in motor responses, further underlying the importance of this molecule in the control of GI motility. An impaired NO production/release has indeed been reported to be implicated in some GI dysmotility. In this article we wanted to focus on the influence of NO on gastric motility by summarizing knowledge regarding its role in both physiological and pathological conditions. The main role of NO on regulating gastric smooth muscle motor responses, with particular reference to NO synthases expression and signaling pathways, is discussed. A deeper knowledge of nitrergic mechanisms is important for a better understanding of their involvement in gastric pathophysiological conditions of hypo- or hyper-motility states and for future therapeutic approaches. A possible role of substances which, by interfering with NO production, could prove useful in managing such motor disorders has been advanced.


Asunto(s)
Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Animales , Motilidad Gastrointestinal/fisiología , Humanos , Contracción Muscular/fisiología , Relajación Muscular/fisiología , Neurotransmisores/metabolismo , Óxido Nítrico Sintasa/metabolismo , Transmisión Sináptica/fisiología
6.
J Cell Mol Med ; 25(14): 6988-7000, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34109728

RESUMEN

Irritable bowel syndrome (IBS) is a highly prevalent gastrointestinal disorder characterized by periods of remission and exacerbation. Among the risk factors to develop IBS, psychosocial stress is widely acknowledged. The water avoidance stress repeatedly applied (rWAS) is considered effective to study IBS etio-pathogenesis. Otilonium bromide (OB), a drug with multiple mechanisms of action, is largely used to treat IBS patients. Orally administered, it concentrates in the large bowel and significantly ameliorates the IBS symptomatology. Presently, we tested whether rWAS rats developed neuro-muscular abnormalities in the distal colon and whether OB treatment prevented them. The investigation was focussed on the nitrergic neurotransmission by combining functional and morphological methodologies. The results confirm rWAS as reliable animal model to investigate the cellular mechanisms responsible for IBS: exposure to one-hour psychosocial stress for 10 days depressed muscle contractility and increased iNOS expression in myenteric neurons. OB treatment counteracted these effects. We hypothesize that these effects are due to the corticotropin-releasing factor (CRF) release, the main mediator of the psychosocial stress, followed by a CRF1receptor activation. OB, that was shown to prevent CRF1r activation, reasonably interrupted the cascade events that bring to the mechanical and immunohistochemical changes affecting rWAS rat colon.


Asunto(s)
Colon/efectos de los fármacos , Fármacos Gastrointestinales/uso terapéutico , Síndrome del Colon Irritable/tratamiento farmacológico , Óxido Nítrico/metabolismo , Compuestos de Amonio Cuaternario/uso terapéutico , Estrés Psicológico/metabolismo , Animales , Colon/metabolismo , Colon/patología , Hormona Liberadora de Corticotropina/metabolismo , Fármacos Gastrointestinales/administración & dosificación , Fármacos Gastrointestinales/farmacología , Síndrome del Colon Irritable/etiología , Síndrome del Colon Irritable/metabolismo , Masculino , Óxido Nítrico Sintasa de Tipo II/metabolismo , Compuestos de Amonio Cuaternario/administración & dosificación , Compuestos de Amonio Cuaternario/farmacología , Ratas , Ratas Wistar , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Estrés Psicológico/complicaciones
7.
J Clin Med ; 10(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072107

RESUMEN

The microbiota-gut system can be thought of as a single unit that interacts with the brain via the "two-way" microbiota-gut-brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.

8.
Front Pharmacol ; 12: 804623, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095510

RESUMEN

Cigarette smoking (CS) is the cause of several organ and apparatus diseases. The effects of smoke in the gut are partially known. Accumulating evidence has shown a relationship between smoking and inflammatory bowel disease, prompting us to investigate the mechanisms of action of smoking in animal models. Despite the role played by neuropeptides in gut inflammation, there are no reports on their role in animal models of smoking exposure. The hormone relaxin has shown anti-inflammatory properties in the intestine, and it might represent a putative therapy to prevent gut damage caused by smoking. Presently, we investigate the effects of chronic smoke exposure on inflammation, mucosal secretion, and vasoactive intestinal peptide (VIP) and substance P (SP) expressions in the ileum and colon of guinea pigs. We also verify the ability of relaxin to counter the smoke-induced effects. Smoke impacted plasma carbon monoxide (CO). In the ileum, it induced inflammatory infiltrates, fibrosis, and acidic mucin production; reduced the blood vessel area; decreased c-kit-positive mast cells and VIP-positive neurons; and increased the SP-positive nerve fibers. In the colon, it reduced the blood vessel area and the goblet cell area and decreased c-kit-positive mast cells, VIP-positive neurons, and SP-positive nerve fibers. Relaxin prevented most of the smoking-induced changes in the ileum, while it was less effective in the colon. This study shows the diverse sensitivity to CS between the ileum and the colon and demonstrates that both VIP and SP are affected by smoking. The efficacy of relaxin proposes this hormone as a potential anti-inflammatory therapeutic to counteract gut damage in humans affected by inflammatory bowel diseases.

9.
Neurogastroenterol Motil ; 33(3): e13993, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33020982

RESUMEN

BACKGROUND AND AIM: Muscularis macrophages (MMs) not only mediate the innate immunity, but also functionally interact with cells important for gastrointestinal motility. The aim of this study was to determine the spatial relationship and types of contacts between the MMs and neighboring cells in the muscularis propria of human and mouse stomach, small intestine, and large intestine. METHODS: The distribution and morphology of MMs and their contacts with other cells were investigated by immunohistochemistry and transmission electron microscopy. KEY RESULTS: Immunohistochemistry showed variable shape and number of MMs according to their location in different portions of the muscle coat. By double labeling, a close association between MMs and neighboring cells, that is, neurons, smooth muscle cells, interstitial cells of Cajal (ICCs), telocytes (TCs)/PDGFRα-positive cells, was seen. Electron microscopy demonstrated that in the muscle layers of both animal species, MMs have similar ultrastructural features and have specialized cell-to-cell contacts with smooth muscle cells and TCs/PDGFRα-positive cells but not with ICCs and enteric neurons. CONCLUSION & INFERENCES: This study describes varying patterns of distribution of MMs between different regions of the gut, and reports the presence of distinct and extended cell-to-cell contacts between MMs and smooth muscle cells and between MMs and TCs/PDGFRα-positive cells. In contrast, MMs, although close to ICCs and nerve elements, did not make contact with them. These findings indicate specialized and variable roles for MMs in the modulation of gastrointestinal motility whose significance should be more closely investigated in normal and pathological conditions.


Asunto(s)
Mucosa Gástrica/citología , Uniones Intercelulares/ultraestructura , Mucosa Intestinal/citología , Macrófagos/citología , Miocitos del Músculo Liso/citología , Telocitos/citología , Animales , Comunicación Celular , Sistema Nervioso Entérico , Femenino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/ultraestructura , Humanos , Células Intersticiales de Cajal/citología , Células Intersticiales de Cajal/metabolismo , Células Intersticiales de Cajal/ultraestructura , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestructura , Macrófagos/metabolismo , Macrófagos/ultraestructura , Masculino , Ratones , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/ultraestructura , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Telocitos/metabolismo , Telocitos/ultraestructura
10.
iScience ; 23(6): 101250, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32629615

RESUMEN

The Tn antigen is a well-known tumor-associated carbohydrate determinant, often incorporated in glycopeptides to develop cancer vaccines. Herein, four copies of a conformationally constrained mimetic of the antigen TnThr (GalNAc-Thr) were conjugated to the adjuvant CRM197, a protein licensed for human use. The resulting vaccine candidate, mime[4]CRM elicited a robust immune response in a triple-negative breast cancer mouse model, correlated with high frequency of CD4+ T cells and low frequency of M2-type macrophages, which reduces tumor progression and lung metastasis growth. Mime[4]CRM-mediated activation of human dendritic cells is reported, and the proliferation of mime[4]CRM-specific T cells, in cancer tissue and peripheral blood of patients with breast cancer, is demonstrated. The locked conformation of the TnThr mimetic and a proper presentation on the surface of CRM197 may explain the binding of the conjugate to the anti-Tn antibody Tn218 and its efficacy to fight cancer cells in mice.

11.
Neuropeptides ; 81: 102031, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32143816

RESUMEN

Glucagon-like peptide-2 (GLP-2) has been reported to indirectly relax gastric smooth muscle. In the present study we investigated, through a combined mechanical and immunohistochemical approach, whether GLP-2 interferes with the electrical field stimulation (EFS)-induced vipergic relaxant responses and the mechanism through which it occurs. For functional experiments, strips from the mouse gastric fundus were mounted in organ baths for isometric recording of the mechanical activity. Vasoactive intestinal peptide (VIP) immunoreactivity in GLP-2 exposed specimens was also evaluated by immunohistochemistry. In carbachol pre-contracted strips, GLP-2 (20 nM) evoked a tetrodotoxin (TTX)-sensitive relaxation, similar in shape to the TTX-insensitive of 100 nM VIP. In the presence of GLP-2, VIP had no longer effects and no more response to GLP-2 was observed following VIP receptor saturation. EFS (4-16 Hz) induced a fast relaxant response followed, at the higher stimulation frequencies (≥ 8 Hz), by a slow one. This latter was abolished either by GLP-2 or VIP receptor saturation as well as by the VIP receptor antagonist, VIP 6-28 (10 µM). A decrease of VIP-immunoreactive nerve structures in the GLP-2 exposed specimens was observed. These results suggest that, in the mouse gastric fundus, GLP-2 influences the EFS-induced slow relaxant response by promoting neuronal VIP release.


Asunto(s)
Fundus Gástrico/fisiología , Péptido 2 Similar al Glucagón/fisiología , Neuronas/fisiología , Péptido Intestinal Vasoactivo/fisiología , Animales , Femenino , Ratones , Contracción Muscular/fisiología , Músculo Liso/fisiología
12.
Neurogastroenterol Motil ; 32(4): e13778, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31845466

RESUMEN

BACKGROUND: Neuromuscular transmission has been extensively studied in the circular layer of the mouse colon where a co-transmission of purines acting on P2Y1 receptors and NO has been previously described. However, the corresponding mechanisms in the longitudinal layer are less known. METHODS: Electrophysiological and myography techniques were used to evaluate spontaneous phasic contractions (SPC) and neural-mediated responses in the proximal, mid, and distal colon devoid of CD1 mice. Immunohistochemistry against c-kit and PDGFRα was performed in each colonic segment. KEY RESULTS: SPC were recorded in both muscle layers at a similar frequency being about four contractions per minute (c.p.m.) in the proximal and distal colon compared to the mid colon (2 c.p.m.). In non-adrenergic, non-cholinergic conditions, L-NNA (1 mmol/L) increased contractility in the circular but not in the longitudinal layer. In the longitudinal muscle, both electrophysiological and mechanical neural-mediated inhibitory responses were L-NNA and ODQ (10 µmol/L) sensitive. NaNP (1 µmol/L) caused cessation of SPC and the response was blocked by ODQ. Neither ADPßS (10 µmol/L) nor CYPPA (10 µmol/L), which both targeted the purinergic pathway, altered longitudinal contractions. PDGFRα + cells were located in both muscle layers and were more numerous compared with cKit + cells, which both formed a heterologous cellular network. A decreasing gradient of the PDGFRα labeling was observed along the colon. CONCLUSION: An inhibitory neural tone was absent in the longitudinal layer and neuronal inhibitory responses were mainly nitrergic. Despite the presence of PDGFRα + cells, purinergic responses were absent. Post-junctional pathways located in different cell types might be responsible for neurotransmitter transduction.


Asunto(s)
Colon/inervación , Colon/fisiología , Contracción Muscular/fisiología , Músculo Liso/inervación , Músculo Liso/fisiología , Transmisión Sináptica/fisiología , Animales , Ratones
13.
Toxins (Basel) ; 11(11)2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31652991

RESUMEN

Botulinum neurotoxin (BoNT) can counteract the highly frequent involuntary muscle contractions and the uncontrolled micturition events that characterize the neurogenic detrusor overactivity (NDO) due to supra-sacral spinal cord lesions. The ability of the toxin to block the neurotransmitter vesicular release causes the reduction of contractions and improves the compliance of the muscle and the bladder filling. BoNT is the second-choice treatment for NDO once the anti-muscarinic drugs have lost their effects. However, the toxin shows a time-dependent efficacy reduction up to a complete loss of activity. The cellular mechanisms responsible for BoNT effects exhaustion are not yet completely defined. Similarly, also the sites of its action are still under identification. A growing amount of data suggest that BoNT, beyond the effects on the efferent terminals, would act on the sensory system recently described in the bladder mucosa. The specimens from NDO patients no longer responding to BoNT treatment displayed a significant increase of the afferent terminals, likely excitatory, and signs of a chronic neurogenic inflammation in the mucosa. In summary, beyond the undoubted benefits in ameliorating the NDO symptomatology, BoNT treatment might bring to alterations in the bladder sensory system able to shorten its own effectiveness.


Asunto(s)
Toxinas Botulínicas Tipo A/efectos adversos , Toxinas Botulínicas Tipo A/uso terapéutico , Fármacos Neuromusculares/efectos adversos , Fármacos Neuromusculares/uso terapéutico , Vejiga Urinaria Neurogénica/tratamiento farmacológico , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Urodinámica/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Clostridium botulinum/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Liso/efectos de los fármacos
14.
J Cell Mol Med ; 23(6): 4076-4087, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30945429

RESUMEN

Urothelium and Lamina Propria (LP) are considered an integrate sensory system which is able to control the detrusor activity. Complete supra-sacral spinal cord lesions cause Neurogenic Detrusor Overactivity (NDO) whose main symptoms are urgency and incontinence. NDO therapy at first consists in anti-muscarinic drugs; secondly, in intra-vesical injection of botulinum toxin. However, with time, all the patients become insensitive to the drugs and decide for cystoplastic surgery. With the aim to get deeper in both NDO and drug's efficacy lack pathogenesis, we investigated the innervation, muscular and connective changes in NDO bladders after surgery by using morphological and quantitative methodologies. Bladder innervation showed a significant global loss associated with an increase in the nerve endings located in the upper LP where a neurogenic inflammation was also present. Smooth muscle cells (SMC) anomalies and fibrosis were found in the detrusor. The increased innervation in the ULP is suggestive for a sprouting and could condition NDO evolution and drug efficacy length. Denervation might cause the SMC anomalies responsible for the detrusor altered contractile activity and intra-cellular traffic and favour the appearance of fibrosis. Inflammation might accelerate these damages. From the clinical point of view, an early anti-inflammatory treatment could positively influence the disease fate.


Asunto(s)
Inflamación Neurogénica/patología , Vejiga Urinaria Hiperactiva/patología , Vejiga Urinaria/patología , Adulto , Toxinas Botulínicas Tipo A/uso terapéutico , Femenino , Humanos , Masculino , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/patología , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Inflamación Neurogénica/tratamiento farmacológico , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Incontinencia Urinaria/tratamiento farmacológico , Incontinencia Urinaria/patología , Urotelio/patología
15.
Curr Pharm Des ; 24(16): 1772-1779, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29732965

RESUMEN

Otilonium bromide (OB) is a drug with spasmolytic activity belonging to quaternary ammonium derivatives and extensively used to treat patients affected by the Irritable Bowel Syndrome (IBS). Thanks to its peculiar pharmacokinetic, OB concentrates in the large bowel wall and acts locally. From the pharmacodynamics point of view, OB is able to inhibit i) the main patterns of human colonic motility in vitro; ii) the contractility caused by excitatory motor neurons stimulation (pre-synaptic action) and iii) the contractility caused by the direct action of excitatory neurotransmitters (post-synaptic action). Interestingly, these effects derive from a complex interaction between the drug and several cellular targets. The main action consists in the blockade of Ca2+ entry through L-type Ca2+ channels and interference with intracytoplasmatic Ca2+ mobilization necessary for SMC contraction, thus preventing excessive bowel contractions and abdominal cramps. Further, OB blocks the T-type Ca2+ channels and interferes with the muscarinic responses; it interacts, directly or indirectly, with the tachykinin receptors on SMC and on primary afferent neurons whose combined effects may result in the reduction of motility and abdominal pain. In summary, a revision of this complex picture of OB activity could help to better address its therapeutic use.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Síndrome del Colon Irritable/tratamiento farmacológico , Compuestos de Amonio Cuaternario/farmacología , Animales , Calcio/metabolismo , Canales de Calcio Tipo T/efectos de los fármacos , Canales de Calcio Tipo T/metabolismo , Humanos , Síndrome del Colon Irritable/metabolismo
16.
Ann Anat ; 218: 118-123, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29654819

RESUMEN

Several connective tissue cells are present in the human bladder wall; among them, the myofibroblasts (MyF) and the so-called interstitial cells (IC) are a matter of investigation either by basic researchers or clinicians. The interest derives from the possibility that these two cell types could regulate the organ function forming a special sensory system in the bladder mucosa. Whereas attention for the myofibroblasts was mainly focused on understanding their role, the so-called IC are debatable starting from their nomenclature. Indeed, the IC should correspond to the previously called fibroblasts-like cells/interstitial Cajal-like cells (ICLC)/interstitial cells of Cajal (ICC) or PDGFRα positive cells, or CD34 positive cells. Recently a proper name was proposed to give them an identity, i.e. telocyte (TC). To date, this nomenclature is a better term than IC that is quite vague and can be used for all the cells that reside in the connective tissue. Noteworthy, in the bladder mucosa, TC and MyF form a hetero-cellular 3-D network. The detrusor overactivity/overactive bladder (DO/OAB) are pathological conditions characterized by hypersensitivity to filling. It has been hypothesized that erroneous afferent inputs generated in the mucosa affect the efferent pathways and, consequently, the detrusor response. Presently, we review the literature regarding the presence and the potential role of TC and MyF in control conditions and in DO/OAB. On the possibility that the 3D-network made up by these two cell types might play a major role in the genesis of anomalous afferent stimuli will be given attention.


Asunto(s)
Husos Musculares/patología , Miofibroblastos/patología , Telocitos/patología , Vejiga Urinaria Hiperactiva/patología , Vejiga Urinaria/patología , Humanos , Células Intersticiales de Cajal/fisiología , Membrana Mucosa/patología , Urotelio/patología
17.
J Cell Mol Med ; 22(1): 195-206, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28782880

RESUMEN

Urinary bladder activity involves central and autonomic nervous systems and bladder wall. Studies on the pathogenesis of voiding disorders such as the neurogenic detrusor overactivity (NDO) due to suprasacral spinal cord lesions have emphasized the importance of an abnormal handling of the afferent signals from urothelium and lamina propria (LP). In the LP (and detrusor), three types of telocytes (TC) are present and form a 3D-network. TC are stromal cells able to form the scaffold that contains and organizes the connective components, to serve as guide for tissue (re)-modelling, to produce trophic and/or regulatory molecules, to share privileged contacts with the immune cells. Specimens of full thickness bladder wall from NDO patients were collected with the aim to investigate possible changes of the three TC types using histology, immunohistochemistry and transmission electron microscopy. The results show that NDO causes several morphological TC changes without cell loss or network interruption. With the exception of those underlying the urothelium, all the TC display signs of activation (increase in Caveolin1 and caveolae, αSMA and thin filaments, Calreticulin and amount of cisternae of the rough endoplasmic reticulum, CD34, euchromatic nuclei and large nucleoli). In all the specimens, a cell infiltrate, mainly consisting in plasma cells located in the vicinity or taking contacts with the TC, is present. In conclusion, our findings show that NDO causes significant changes of all the TC. Notably, these changes can be interpreted as TC adaptability to the pathological condition likely preserving each of their peculiar functions.


Asunto(s)
Telocitos/patología , Vejiga Urinaria Hiperactiva/patología , Vejiga Urinaria/patología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Membrana Mucosa/patología , Membrana Mucosa/ultraestructura , Telocitos/ultraestructura , Vejiga Urinaria/ultraestructura , Urotelio/patología , Urotelio/ultraestructura
18.
World J Gastroenterol ; 23(40): 7211-7220, 2017 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-29142468

RESUMEN

AIM: To investigate whether glucagon-like peptide-2 (GLP-2) influences the neurally-induced responses in gastric strips from mice, since no data are available. METHODS: For functional experiments, gastric fundal strips were mounted in organ baths containing Krebs-Henseleit solution. Mechanical responses were recorded via force-displacement transducers, which were coupled to a polygraph for continuous recording of isometric tension. Electrical field stimulation (EFS) was applied via two platinum wire rings through which the preparation was threaded. The effects of GLP-2 (2 and 20 nmol/L) were evaluated on the neurally-induced contractile and relaxant responses elicited by EFS. Neuronal nitric oxide synthase (nNOS) enzyme was evaluated by immunohistochemistry. RESULTS: In the functional experiments, electrical field stimulation (EFS, 4-16 Hz) induced tetrodotoxin (TTX)-sensitive contractile responses, which were reduced in amplitude by GLP-2 (P < 0.05). In the presence of the nitric oxide (NO) synthesis inhibitor L-NNA, GLP-2 no longer influenced the neurally-evoked contractile responses (P > 0.05). The direct smooth muscle response to methacholine was not influenced by GLP-2 (P > 0.05). In the presence of guanethidine and carbachol, the addition of GLP-2 to the bath medium evoked TTX-sensitive relaxant responses that were unaffected by L-NNA (P > 0.05). EFS induced a fast NO-mediated relaxation, whose amplitude was enhanced in the presence of the hormone (P < 0.05). Immunohistochemical experiments showed a significant increase (P < 0.05) in nNOS immunoreactivity in the nerve structures after GLP-2 exposure. CONCLUSION: The results demonstrate that in gastric fundal strips, GLP-2 influences the amplitude of neurally-induced responses through the modulation of the nitrergic neurotransmission and increases nNOS expression.


Asunto(s)
Fundus Gástrico/fisiología , Motilidad Gastrointestinal/fisiología , Péptido 2 Similar al Glucagón/fisiología , Músculo Liso/fisiología , Transmisión Sináptica/fisiología , Animales , Estimulación Eléctrica , Femenino , Fundus Gástrico/inervación , Ratones , Contracción Muscular/fisiología , Relajación Muscular/fisiología , Músculo Liso/inervación , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo
19.
J Cell Mol Med ; 21(4): 735-745, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27866394

RESUMEN

Otilonium bromide (OB) is a spasmolytic drug successfully used for the treatment of irritable bowel syndrome (IBS). Its efficacy has been attributed to the block of L- and T-type Ca2+ channels and muscarinic and tachykinin receptors in the smooth muscle. Furthermore, in healthy rats, repeated OB administration modified neurotransmitter expression and function suggesting other mechanisms of action. On this basis, we investigated whether repeated OB treatment prevented the functional and neurochemical changes observed in the colon of rats underwent to wrap restrain stress (WRS) a psychosocial stressor considered suitable to reproduce the main IBS signs and symptoms. In control, WRS and OB/WRS rats functional parameters were measured in vivo and morphological investigations were done ex vivo in the colon. The results showed that OB counteracts most of the neurotransmitters changes caused by WRS. In particular, the drug prevents the decrease in SP-, NK1r-, nNOS-, VIP-, and S100ß-immunoreactivity (IR) and the increase in CGRP-, and CRF1r-IR. On the contrary, OB does not affect the increase in CRF2r-IR neurons observed in WRS rats and does not interfere with the mild mucosal inflammation due to WRS. Finally, OB per se increases the Mr2 expression in the muscle wall and decreases the number of the myenteric ChAT-IR neurons. Functional findings show a significantly reduction in the number of spontaneous abdominal contraction in OB treated rats. The ability of OB to block L-type Ca2+ channels, also expressed by enteric neurons, might represent a possible mechanism through which OB exerts its actions.


Asunto(s)
Colon/metabolismo , Neurotransmisores/metabolismo , Compuestos de Amonio Cuaternario/administración & dosificación , Compuestos de Amonio Cuaternario/uso terapéutico , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Colon/efectos de los fármacos , Colon/patología , Células Intersticiales de Cajal/efectos de los fármacos , Células Intersticiales de Cajal/metabolismo , Células Intersticiales de Cajal/patología , Masculino , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/patología , Músculo Liso/efectos de los fármacos , Proteínas Proto-Oncogénicas c-kit/metabolismo , Compuestos de Amonio Cuaternario/farmacología , Ratas Wistar , Receptor Muscarínico M2/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de Neuroquinina-1/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
20.
Biomol Concepts ; 7(2): 93-102, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26992201

RESUMEN

In the interstitium of the connective tissue several types of cells occur. The fibroblasts, responsible for matrix formation, the mast cells, involved in local response to inflammatory stimuli, resident macrophages, plasma cells, lymphocytes, granulocytes and monocytes, all engaged in immunity responses. Recently, another type of interstitial cell, found in all organs so far examined, has been added to the previous ones, the telocytes (TC). In the gut, in addition to the cells listed above, there are also the interstitial cells of Cajal (ICC), a peculiar type of cell exclusively detected in the alimentary tract with multiple functions including pace-maker activity. The possibility that TC and ICC could correspond to a unique cell type, where the former would represent an ICC variant outside the gut, was initially considered, however, further studies have clearly shown that ICC and TC are two distinct types of cells. In the gut, while the features and the roles of the ICC are established, part of the scientific community is still disputing these 'new' interstitial cells to which several names such as fibroblast-like cells (FLCs), interstitial Cajal-like cells or, most recently, PDGFRα+ cells have been attributed. This review will detail the main features and roles of the TC and ICC with the aim to establish their relationships and hopefully define the identity of the TC in the gut.


Asunto(s)
Tracto Gastrointestinal/citología , Células Intersticiales de Cajal/patología , Telocitos/fisiología , Animales , Biomarcadores , Comunicación Celular , Plasticidad de la Célula , Humanos , Células Intersticiales de Cajal/citología , Células Intersticiales de Cajal/ultraestructura , Transmisión Sináptica , Telocitos/citología , Telocitos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA