Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 12(20): e2203232, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36988351

RESUMEN

Extracellular lipopolysaccharide (LPS) released from bacteria cells can enter the bloodstream and cause septic complications with excessive host inflammatory responses. Target-specific strategies to inactivate inflammation mediators have largely failed to improve the prognosis of septic patients in clinical trials. By utilizing their high density of positive charges, de novo designed peptide nanonets are shown to selectively entrap the negatively charged LPS and pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). This in turn enables the nanonets to suppress LPS-induced cytokine production by murine macrophage cell line and rescue the antimicrobial activity of the last-resort antibiotic, colistin, from LPS binding. Using an acute lung injury model in mice, it is demonstrated that intratracheal administration of the fibrillating peptides is effective at lowering local release of TNF-α and IL-6. Together with previously shown ability to simultaneously trap and kill pathogenic bacteria, the peptide nanonets display remarkable potential as a holistic, multifunctional anti-infective, and anti-septic biomaterial.


Asunto(s)
Citocinas , Endotoxinas , Ratones , Animales , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Antibacterianos/farmacología
2.
Molecules ; 27(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35209228

RESUMEN

The high mortality associated with invasive fungal infections, narrow spectrum of available antifungals, and increasing evolution of antifungal resistance necessitate the development of alternative therapies. Host defense peptides are regarded as the first line of defense against microbial invasion in both vertebrates and invertebrates. In this work, we investigated the effectiveness of four naturally occurring pore-forming antimicrobial peptides (melittin, magainin 2, cecropin A, and mastoparan B) against a panel of clinically relevant pathogens, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. We present data on the antifungal activities of the four pore-forming peptides, assessed with descriptive statistics, and their cytocompatibility with cultured human cells. Among the four peptides, mastoparan B (MB) displayed potent antifungal activity, whereas cecropin A was the least potent. We show that MB susceptibility of phylogenetically distant non-candida albicans can vary and be described by different intrinsic physicochemical parameters of pore-forming α-helical peptides. These findings have potential therapeutic implications for the design and development of safe antifungal peptide-based drugs.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fenómenos Químicos , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Proteica , Análisis Espectral , Relación Estructura-Actividad
3.
Front Biosci (Landmark Ed) ; 27(2): 64, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35227007

RESUMEN

BACKGROUND: Antimicrobial peptides (AMPs) are short, cationic, amphipathic molecules that have gained tremendous popularity as alternatives to traditional antibiotics due to their lower propensity to develop bacterial resistance. However, the clinical developability of AMPs remains impeded due to shortcomings such as proteolytic instability and poor penetration leading to low bioavailability. AIMS: To improve the access of AMPs to cells and subsequent bacteria killing, we evaluated the cell-penetrating and antimicrobial properties of three novel libraries of synthetic peptoids using Minimum Inhibitory Concentration, killing efficacy and membrane permeabilization assays against mycobacteria and Staphylococcus aureus. In addition, we investigated cell selectivity using mammalian cells to assess peptoid toxicity. RESULTS: We showed that short tetrameric Rhodamine B-labeled peptoids composed of a balance of aromatic and lipophilic residues have potent selective antimicrobial activity against a range of microorganisms. The most potent candidates were active against drug-resistant S. aureus isolates as well as mycobacterial strains, with cell penetrating capabilities reported in HeLa and RAW 264.7 macrophage cells. CONCLUSIONS: These data suggest that peptoids with novel dual functionalities may potentially be an interesting class of therapeutics and/or molecular delivery agents for anti-infective purposes.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Mycobacterium , Peptoides , Infecciones Estafilocócicas , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Mamíferos , Pruebas de Sensibilidad Microbiana , Peptoides/química , Peptoides/farmacología , Preparaciones Farmacéuticas , Staphylococcus aureus
4.
J Control Release ; 313: 120-130, 2019 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-31629042

RESUMEN

There is growing interest in the development of nucleic acid nanostructures as smart functional materials for applications in drug delivery. Inspired by the diverse physical interactions that exist in nature, crosslinked DNA nanostructures can serve as attractive affinity binding networks that interact with therapeutic cargos or living cells. Herein we report a strategy that addresses the challenges of topical oligopeptide therapy by exploiting high binding affinity between polyanionic DNA nanostructures and cationic antimicrobial peptides (AMPs) to fabricate hydrogels that release a model antimicrobial L12 peptide in response to pathogenic S. aureus infections. We further demonstrated controlled peptide release profiles via the DNA hydrogels that were biocompatible and delivered superior antimicrobial activity against nuclease-releasing susceptible and methicillin-resistant S. aureus infections. Single application of the L12-loaded DNA hydrogels on porcine explant S. aureus infections revealed potent efficacy after 24h. As a result of the capacity of the crosslinked DNA nanostructures to elicit a strong anti-inflammatory response, in vivo treatment of mice excision wounds translated into faster healing rates. Overall, the crosslinked DNA nanostructures reported in this study offer significant advantage as functional wound dressings and their future adaptation holds equally great promise for the delivery of cationic antimicrobials.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Materiales Biocompatibles/química , Reactivos de Enlaces Cruzados/química , ADN/química , Hidrogeles/química , Nanoestructuras/química , Polímeros/química , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Vendajes , Línea Celular , Proliferación Celular/efectos de los fármacos , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Femenino , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones Endogámicos C57BL , Polielectrolitos , Reología , Piel , Electricidad Estática , Porcinos , Cicatrización de Heridas/efectos de los fármacos
5.
Biochem Pharmacol ; 146: 188-198, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28958841

RESUMEN

Cardiac enzymes such as cytochrome P450 2J2 (CYP2J2) metabolize arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acids (EETs), which in turn are metabolized by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs). As EETs and less potent DHETs exhibit cardioprotective and vasoprotective functions, optimum levels of cardiac EETs are paramount in cardiac homeostasis. Previously, we demonstrated that dronedarone, amiodarone and their main metabolites, namely N-desbutyldronedarone (NDBD) and N-desethylamiodarone (NDEA), potently inhibit human cardiac CYP2J2-mediated astemizole metabolism in vitro. In this study, we investigated the inhibition of recombinant human CYP450 enzymes (rhCYP2J2, rhCYP2C8, rhCYP2C9)-mediated AA metabolism and human recombinant sEH (rhsEH)-mediated EET metabolism by dronedarone, amiodarone, NDBD and NDEA. A static model describing sequential metabolism was further developed to predict the aggregate effect of dual-inhibition of rhCYP2J2 and rhsEH on the fold-of 14,15-EET level (CEET'/CEET). Dronedarone, amiodarone and NDBD inhibit rhCYP2J2-mediated metabolism of AA to 14,15-EET with Ki values of 3.25, 5.48, 1.39µM respectively. Additionally, dronedarone, amiodarone, NDBD and NDEA inhibit rhsEH-mediated metabolism of 14,15-EET to 14,15-DHET with Ki values of 5.10, 13.08, 2.04, 1.88µM respectively. Based on static sequential metabolism modelling, dronedarone (CEET'/CEET=0.85), amiodarone (CEET'/CEET=0.48) and NDBD (CEET'/CEET=0.76) were predicted to decrease cardiac 14,15-EET level whereas NDEA (CEET'/CEET>35.5) was predicted to elevate it. Based on our novel findings, we postulate the differential cardiac exacerbation potential of dronedarone and amiodarone is partly associated with their differential inhibition potencies of cardiac CYP2J2 and sEH.


Asunto(s)
Amiodarona/análogos & derivados , Amiodarona/farmacología , Ácido Araquidónico/metabolismo , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/química , Ácido 8,11,14-Eicosatrienoico/metabolismo , Amiodarona/química , Amiodarona/metabolismo , Citocromo P-450 CYP2J2 , Inhibidores Enzimáticos del Citocromo P-450/química , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Dronedarona , Humanos , Cinética
6.
Antibiotics (Basel) ; 6(3)2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28677631

RESUMEN

For the past few decades, the rapid rise of antibiotic multidrug-resistance has presented a palpable threat to human health worldwide. Meanwhile, the number of novel antibiotics released to the market has been steadily declining. Therefore, it is imperative that we utilize innovative approaches for the development of antimicrobial therapies. This article will explore alternative strategies, namely drug conjugates and biological carriers for the targeted delivery of antibiotics, which are often eclipsed by their nanomedicine-based counterparts. A variety of macromolecules have been investigated as conjugate carriers, but only those most widely studied in the field of infectious diseases (e.g., proteins, peptides, antibodies) will be discussed in detail. For the latter group, blood cells, especially erythrocytes, have been successfully tested as homing carriers of antimicrobial agents. Bacteriophages have also been studied as a candidate for similar functions. Once these alternative strategies receive the amount of research interest and resources that would more accurately reflect their latent applicability, they will inevitably prove valuable in the perennial fight against antibiotic resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...