Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 14: 54, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265658

RESUMEN

In the present study, we characterized the effects of bath application of the proconvulsant drug 4-aminopyridine (4-AP) alone or in combination with GABAA and/or GABAB receptor antagonists, in cortical dysplasia (CD type I and CD type IIa/b), tuberous sclerosis complex (TSC), and non-CD cortical tissue samples from pediatric epilepsy surgery patients. Whole-cell patch clamp recordings in current and voltage clamp modes were obtained from cortical pyramidal neurons (CPNs), interneurons, and balloon/giant cells. In pyramidal neurons, bath application of 4-AP produced an increase in spontaneous synaptic activity as well as rhythmic membrane oscillations. In current clamp mode, these oscillations were generally depolarizing or biphasic and were accompanied by increased membrane conductance. In interneurons, membrane oscillations were consistently depolarizing and accompanied by bursts of action potentials. In a subset of balloon/giant cells from CD type IIb and TSC cases, respectively, 4-AP induced very low-amplitude, slow membrane oscillations that echoed the rhythmic oscillations from pyramidal neurons and interneurons. Bicuculline reduced the amplitude of membrane oscillations induced by 4-AP, indicating that they were mediated principally by GABAA receptors. 4-AP alone or in combination with bicuculline increased cortical excitability but did not induce seizure-like discharges. Ictal activity was observed in pyramidal neurons and interneurons from CD and TSC cases only when phaclofen, a GABAB receptor antagonist, was added to the 4-AP and bicuculline solution. These results emphasize the critical and permissive role of GABAB receptors in the transition to an ictal state in pediatric CD tissue and highlight the importance of these receptors as a potential therapeutic target in pediatric epilepsy.

2.
J Neurosci ; 40(13): 2764-2775, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32102923

RESUMEN

Recurrent seizures, which define epilepsy, are transient abnormalities in the electrical activity of the brain. The mechanistic basis of seizure initiation, and the contribution of defined neuronal subtypes to seizure pathophysiology, remains poorly understood. We performed in vivo two-photon calcium imaging in neocortex during temperature-induced seizures in male and female Dravet syndrome (Scn1a+/-) mice, a neurodevelopmental disorder with prominent temperature-sensitive epilepsy. Mean activity of both putative principal cells and parvalbumin-positive interneurons (PV-INs) was higher in Scn1a+/- relative to wild-type controls during quiet wakefulness at baseline and at elevated core body temperature. However, wild-type PV-INs showed a progressive synchronization in response to temperature elevation that was absent in PV-INs from Scn1a+/- mice. Hence, PV-IN activity remains intact interictally in Scn1a+/- mice, yet exhibits decreased synchrony immediately before seizure onset. We suggest that impaired PV-IN synchronization may contribute to the transition to the ictal state during temperature-induced seizures in Dravet syndrome.SIGNIFICANCE STATEMENT Epilepsy is a common neurological disorder defined by recurrent, unprovoked seizures. However, basic mechanisms of seizure initiation and propagation remain poorly understood. We performed in vivo two-photon calcium imaging in an experimental model of Dravet syndrome (Scn1a+/- mice)-a severe neurodevelopmental disorder defined by temperature-sensitive, treatment-resistant epilepsy-and record activity of putative excitatory neurons and parvalbumin-positive GABAergic neocortical interneurons (PV-INs) during naturalistic seizures induced by increased core body temperature. PV-IN activity was higher in Scn1a+/- relative to wild-type controls during quiet wakefulness. However, wild-type PV-INs showed progressive synchronization in response to temperature elevation that was absent in PV-INs from Scn1a+/- mice before seizure onset. Hence, impaired PV-IN synchronization may contribute to transition to seizure in Dravet syndrome.


Asunto(s)
Epilepsias Mioclónicas/fisiopatología , Interneuronas/fisiología , Convulsiones/fisiopatología , Potenciales de Acción/fisiología , Animales , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones/genética
3.
Cereb Cortex ; 30(4): 2372-2388, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-31761935

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder characterized by involuntary movements, cognitive deficits, and psychiatric disturbances. Although evidence indicates that projections from motor cortical areas play a key role in the development of dysfunctional striatal activity and motor phenotype, little is known about the changes in cortical microcircuits and their role in the development of the HD phenotype. Here we used two-photon laser-scanning microscopy to evaluate network dynamics of motor cortical neurons in layers II/III in behaving transgenic R6/2 and knock-in Q175+/- mice. Symptomatic R6/2 mice displayed increased motion manifested by a significantly greater number of motion epochs, whereas symptomatic Q175 mice displayed decreased motion. In both models, calcium transients in symptomatic mice displayed reduced amplitude, suggesting decreased bursting activity. Changes in frequency were genotype- and time-dependent; for R6/2 mice, the frequency was reduced during both motion and nonmotion, whereas in symptomatic Q175 mice, the reduction only occurred during nonmotion. In presymptomatic Q175 mice, frequency was increased during both behavioral states. Interneuronal correlation coefficients were generally decreased in both models, suggesting disrupted interneuronal communication in HD cerebral cortex. These results indicate similar and contrasting effects of the HD mutation on cortical ensemble activity depending on mouse model and disease stage.


Asunto(s)
Calcio , Modelos Animales de Enfermedad , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/genética , Corteza Motora/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Animales , Calcio/metabolismo , Femenino , Enfermedad de Huntington/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Corteza Motora/metabolismo , Neuronas Motoras/metabolismo , Red Nerviosa/metabolismo
4.
J Neurophysiol ; 113(7): 2953-66, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25673747

RESUMEN

The Q175 knockin mouse model of Huntington's disease (HD) carries a CAG trinucleotide expansion of the human mutant huntingtin allele in its native mouse genomic context and recapitulates the genotype more closely than transgenic models. In this study we examined the progression of changes in intrinsic membrane properties and excitatory and inhibitory synaptic transmission, using whole cell patch-clamp recordings of medium-sized spiny neurons (MSNs) in the dorsolateral striatum and cortical pyramidal neurons (CPNs) in layers 2/3 of the primary motor cortex in brain slices from heterozygous (Q175(+/-)) and homozygous (Q175(+/+)) mice. Input resistance in MSNs from Q175(+/+) and Q175(+/-) mice was significantly increased compared with wild-type (WT) littermates beginning at 2 mo. Furthermore, the frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) was significantly reduced in MSNs from Q175(+/+) and Q175(+/-) mice compared with WTs beginning at 7 mo. In contrast, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) and IPSC-to-EPSC ratios were increased in MSNs from Q175(+/+) mice beginning at 2 mo. Morphologically, significant decreases in spine density of MSNs from Q175(+/-) and Q175(+/+) mice occurred at 7 and 12 mo. In CPNs, sIPSC frequencies and IPSC-to-EPSC ratios were significantly increased in Q175(+/-) mice compared with WTs at 12 mo. There were no changes in intrinsic membrane properties or morphology. In summary, we show a number of alterations in electrophysiological and morphological properties of MSNs in Q175 mice that are similar to other HD mouse models. However, unlike other models, CPN inhibitory activity is increased in Q175(+/-) mice, indicating reduced cortical excitability.


Asunto(s)
Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores , Enfermedad de Huntington/fisiopatología , Inhibición Neural , Células Piramidales , Animales , Tamaño de la Célula , Cuerpo Estriado/patología , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Plasticidad Neuronal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...