Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Korean J Physiol Pharmacol ; 28(4): 335-344, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38926841

RESUMEN

Diphenyleneiodonium (DPI) has been widely used as an inhibitor of NADPH oxidase (Nox) to discover its function in cardiac myocytes under various stimuli. However, the effects of DPI itself on Ca2+ signaling and contraction in cardiac myocytes under control conditions have not been understood. We investigated the effects of DPI on contraction and Ca2+ signaling and their underlying mechanisms using video edge detection, confocal imaging, and whole-cell patch clamp technique in isolated rat cardiac myocytes. Application of DPI suppressed cell shortenings in a concentration-dependent manner (IC50 of ≅0.17 µM) with a maximal inhibition of ~70% at ~100 µM. DPI decreased the magnitude of Ca2+ transient and sarcoplasmic reticulum Ca2+ content by 20%-30% at 3 µM that is usually used to remove the Nox activity, with no effect on fractional release. There was no significant change in the half-decay time of Ca2+ transients by DPI. The L-type Ca2+ current (ICa) was decreased concentration-dependently by DPI (IC50 of ≅40.3 µM) with ≅13.1%-inhibition at 3 µM. The frequency of Ca2+ sparks was reduced by 3 µM DPI (by ~25%), which was resistant to a brief removal of external Ca2+ and Na+. Mitochondrial superoxide level was reduced by DPI at 3-100 µM. Our data suggest that DPI may suppress L-type Ca2+ channel and RyR, thereby attenuating Ca2+-induced Ca2+ release and contractility in cardiac myocytes, and that such DPI effects may be related to mitochondrial metabolic suppression.

2.
Curr Biol ; 30(17): 3378-3396.e7, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32679097

RESUMEN

Hypoxia sensors are essential for regulating local oxygen (O2) homeostasis within the body. This is especially pertinent within the CNS, which is particularly vulnerable to O2 deprivation due to high energetic demand. Here, we reveal hypoxia-monitoring function exerted by astrocytes through an O2-regulated protein trafficking mechanism within the CNS. Strikingly, cultured mouse astrocytes isolated from the parafacial respiratory group (pFRG) and retrotrapezoid nucleus (RTN) region are capable of rapidly responding to moderate hypoxia via the sensor cation channel transient receptor potential (TRP) A1 but, unlike multimodal sensory neurons, are inert to hyperoxia and other TRPA1 activators (carbon dioxide, electrophiles, and oxidants) in normoxia. Mechanistically, O2 suppresses TRPA1 channel activity by protein internalization via O2-dependent proline hydroxylation and subsequent ubiquitination by an E3 ubiquitin ligase, NEDD4-1 (neural precursor cell-expressed developmentally down-regulated protein 4). Hypoxia inhibits this process and instantly accumulates TRPA1 proteins at the plasma membrane, inducing TRPA1-mediated Ca2+ influx that triggers ATP release from pFRG/RTN astrocytes, potentiating respiratory center activity. Furthermore, astrocyte-specific Trpa1 disruption in a mouse brainstem-spinal cord preparation impedes the amplitude augmentation of the central autonomic respiratory output during hypoxia. Thus, reversible coupling of the TRPA1 channels with O2-dependent protein translocation allows astrocytes to act as acute hypoxia sensors in the medullary respiratory center.


Asunto(s)
Astrocitos/patología , Neuronas Dopaminérgicas/patología , Endocitosis , Hipoxia/fisiopatología , Oxígeno/metabolismo , Canal Catiónico TRPA1/fisiología , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Transporte de Proteínas
3.
J Am Soc Nephrol ; 30(9): 1587-1603, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31266820

RESUMEN

BACKGROUND: TRPC6 is a nonselective cation channel, and mutations of this gene are associated with FSGS. These mutations are associated with TRPC6 current amplitude amplification and/or delay of the channel inactivation (gain-of-function phenotype). However, the mechanism of the gain-of-function in TRPC6 activity has not yet been clearly solved. METHODS: We performed electrophysiologic, biochemical, and biophysical experiments to elucidate the molecular mechanism underlying calmodulin (CaM)-mediated Ca2+-dependent inactivation (CDI) of TRPC6. To address the pathophysiologic contribution of CDI, we assessed the actin filament organization in cultured mouse podocytes. RESULTS: Both lobes of CaM helped induce CDI. Moreover, CaM binding to the TRPC6 CaM-binding domain (CBD) was Ca2+-dependent and exhibited a 1:2 (CaM/CBD) stoichiometry. The TRPC6 coiled-coil assembly, which brought two CBDs into adequate proximity, was essential for CDI. Deletion of the coiled-coil slowed CDI of TRPC6, indicating that the coiled-coil assembly configures both lobes of CaM binding on two CBDs to induce normal CDI. The FSGS-associated TRPC6 mutations within the coiled-coil severely delayed CDI and often increased TRPC6 current amplitudes. In cultured mouse podocytes, FSGS-associated channels and CaM mutations led to sustained Ca2+ elevations and a disorganized cytoskeleton. CONCLUSIONS: The gain-of-function mechanism found in FSGS-causing mutations in TRPC6 can be explained by impairments of the CDI, caused by disruptions of TRPC's coiled-coil assembly which is essential for CaM binding. The resulting excess Ca2+ may contribute to structural damage in the podocytes.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Citoesqueleto/ultraestructura , Glomeruloesclerosis Focal y Segmentaria/genética , Canal Catiónico TRPC6/genética , Actinas/ultraestructura , Animales , Sitios de Unión , Calmodulina/genética , Mutación con Ganancia de Función , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Células HEK293 , Humanos , Ratones , Fenotipo , Podocitos , Dominios Proteicos , Canal Catiónico TRPC6/ultraestructura
4.
Cell Rep ; 26(5): 1213-1226.e7, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699350

RESUMEN

Pancreatic ß cells secrete insulin by Ca2+-triggered exocytosis. However, there is no apparent secretory site similar to the neuronal active zones, and the cellular and molecular localization mechanism underlying polarized exocytosis remains elusive. Here, we report that ELKS, a vertebrate active zone protein, is used in ß cells to regulate Ca2+ influx for insulin secretion. ß cell-specific ELKS-knockout (KO) mice showed impaired glucose-stimulated first-phase insulin secretion and reduced L-type voltage-dependent Ca2+ channel (VDCC) current density. In situ Ca2+ imaging of ß cells within islets expressing a membrane-bound G-CaMP8b Ca2+ sensor demonstrated initial local Ca2+ signals at the ELKS-localized vascular side of the ß cell plasma membrane, which were markedly decreased in ELKS-KO ß cells. Mechanistically, ELKS directly interacted with the VDCC-ß subunit via the GK domain. These findings suggest that ELKS and VDCCs form a potent insulin secretion complex at the vascular side of the ß cell plasma membrane for polarized Ca2+ influx and first-phase insulin secretion from pancreatic islets.


Asunto(s)
Calcio/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Glucosa/farmacología , Humanos , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Proteínas del Tejido Nervioso/deficiencia , Unión Proteica/efectos de los fármacos , Proteínas de Unión al GTP rab/deficiencia
5.
Oncogene ; 38(20): 3962-3969, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30670776

RESUMEN

CNNM4 is a Mg2+ transporter highly expressed in the colon epithelia. Its importance in regulating intracellular Mg2+ levels and cancer development has been documented, but how CNNM4 function affects the dynamic homeostasis of the epithelial tissue remains unclear. Here, we show that Cnnm4 deficiency promotes cell proliferation and partly suppresses cell differentiation in the colon epithelia, making them vulnerable to cancer development. Such phenotypic characteristics are highly similar to those of mice lacking Trpv1, which encodes the cation channel involved in capsaicin-stimulated Ca2+ influx. Indeed, Ca2+-imaging analyses using the organoid culture reveal that Ca2+ influx stimulated by capsaicin is greatly impaired by Cnnm4 deficiency. Moreover, EGF receptor signaling is constitutively activated in the colon epithelia of Cnnm4-deficient mice, as is the case with Trpv1-deficient mice. The administration of gefitinib, a clinically available inhibitor of EGF receptor, cancels the augmented proliferation of cells observed in Cnnm4-deficient mice. Collectively, these results establish the functional interplay between Mg2+ and Ca2+ in the colon epithelia, which is crucial for maintaining the dynamic homeostasis of the epithelial tissue.


Asunto(s)
Señalización del Calcio/fisiología , Proteínas de Transporte de Catión/fisiología , Colon/citología , Animales , Proteínas de Transporte de Catión/genética , Proliferación Celular/efectos de los fármacos , Colon/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Factor de Crecimiento Epidérmico/metabolismo , Epitelio/metabolismo , Femenino , Gefitinib/farmacología , Magnesio/metabolismo , Masculino , Ratones Mutantes , Técnicas de Cultivo de Órganos , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA