Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 291(Pt 3): 133059, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34838603

RESUMEN

This study was conducted to estimate the generation of single-use plastics (SUPs) and elucidate consumer behavior towards a plastic-free university. The results show that the consumption rate of plastic bottles was the highest at 1.39 g per student per day (g.s-1.d-1), followed by plastic cups (0.20 g s-1.d-1), and plastic bags (0.14 g s-1.d-1). Approximately 94.41% of students were highly aware of the negative impacts of SUPs. More than four-fifths of the students (82.32%) assumed that they were responsible for the SUP pollution issue, whereas 59.52% considered SUP reduction (or lack thereof) by individuals, governments, and producers/businesses be important factors. Approximately 19.03% of the students supported implementing a high fine, one-tenth agreed for a total ban on SUPs, while nearly one-fifth believed reducing SUP consumption was unnecessary. Strategies for plastic-free universities was initiated by establishing the goal of "plastic-free university" and implementing integrated actions including a ban (plastic cups and bags) awareness-raising, and suitable alternatives.


Asunto(s)
Plásticos , Universidades , Comportamiento del Consumidor , Contaminación Ambiental , Humanos
2.
J Psychoactive Drugs ; 53(2): 127-139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34003732

RESUMEN

Mitragynine is a major psychoactive alkaloid in leaves of kratom (Mitragyna speciosa Korth.). To understand its disposition in organs, this study aimed to develop a physiologically based pharmacokinetic (PBPK) model that predicts mitragynine concentrations in plasma and organ of interests in rats and humans. The PBPK model consisted of six organ compartments (i.e. lung, brain, liver, fat, slowly perfused tissues, and rapidly perfused tissue). From systematic searching, three pharmacokinetic studies of mitragynine (two studies in rats and 1 study in humans) were retrieved from the literature. Berkeley Madonna Software (version 8.3.18) was used for model development and model simulation. The developed PBPK model consisted of biologically relevant features following involvement of (i) breast cancer-resistant protein (BCRP) in brain, (ii) a hepatic cytochrome P450 3A4 (CYP3A4)-mediated metabolism in the liver, and (iii) a diffusion-limited transport in fat. The simulations adequately describe simulated and observed data in the two species with different dosing regimens. PBPK models of mitragynine in rats and humans were successfully developed. The models may be used to guide optimal mitragynine dosing regimens.


Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Animales , Humanos , Proteínas de Neoplasias , Extractos Vegetales , Ratas
3.
J Hazard Mater ; 413: 125426, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33621772

RESUMEN

This study evaluated and compared the performance of two vertical flow constructed wetlands (VF) using expanded clay (VF1) and biochar (VF2), of which both are low-cost, eco-friendly, and exhibit potentially high adsorption as compared to conventional filter layers. Both VFs achieved relatively high removal for organic matters (i.e. Biological oxygen demand during 5 days, BOD5) and nitrogen, accounting for 9.5 - 10.5 g.BOD5.m-2.d-1 and 3.5 - 3.6 g.NH4-N.m-2.d-1, respectively. The different filter materials did not exert any significant discrepancy to effluent quality in terms of suspended solids, organic matters and NO3-N (P > 0.05), but they did influence NH4-N effluent as evidenced by the removal rate of that by VF1 and VF2 being of 82.4 ± 5.7 and 84.6 ± 6.4%, respectively (P < 0.05). The results obtained from the designed systems were further subject to machine learning to clarify the effecting factors and predict the effluents. The optimal algorithms were random forest, generalized linear model, and support vector machine. The values of the coefficient of determination (R2) and the root mean square error (RMSE) of whole fitting data achieved 74.0% and 5.0 mg.L-1, 80.0% and 0.3 mg.L-1, 90.1% and 2.9 mg.L-1, and 48.5% and 0.5 mg.L-1 for BOD5_VF1, NH4-N_VF1, BOD5_VF2, and NH4-N_VF2, respectively.


Asunto(s)
Aguas Residuales , Humedales , Análisis de la Demanda Biológica de Oxígeno , Carbón Orgánico , Arcilla , Aprendizaje Automático , Nitrógeno/análisis , Eliminación de Residuos Líquidos , Aguas Residuales/análisis
4.
RSC Adv ; 11(31): 18881-18897, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35478660

RESUMEN

This study presents the modification of cassava root husk-derived biochar (CRHB) with ZnO nanoparticles (ZnO-NPs) for the simultaneous adsorption of As(iii), Cd(ii), Pb(ii) and Cr(vi). By conducting batch-mode experiments, it was concluded that 3% w/w was the best impregnation ratio for the modification of CRHB using ZnO-NPs, and was denoted as CRHB-ZnO3 in this study. The optimal conditions for heavy metal adsorption were obtained at a pH of 6-7, contact time of 60 min, and initial metal concentration of 80 mg L-1. The heavy metal adsorption capacities onto CRHB-ZnO3 showed the following tendency: Pb(ii) > Cd(ii) > As(iii) > Cr(vi). The total optimal adsorption capacity achieved in the adsorption of the 4 abovementioned metals reached 115.11 and 154.21 mg g-1 for CRHB and CRHB-ZnO3, respectively. For each Pb(ii), Cd(ii), As(iii), and Cr(vi) metal, the maximum adsorption capacities of CRHB-ZnO3 were 44.27, 42.05, 39.52, and 28.37 mg g-1, respectively, and those of CRHB were 34.47, 32.33, 26.42 and 21.89 mg g-1, respectively. In terms of kinetics, both the pseudo-first-order and the pseudo-second-order fit well with metal adsorption onto biochars with a high correlation coefficient of R 2, while the best isothermal description followed the Langmuir model. As a result, the adsorption process of heavy metals onto biochars was chemisorption on homogeneous monolayers, which was mainly controlled by cation exchange and surface precipitation mechanisms due to enriched oxygen-containing surface groups with ZnO-NP modification of biochar. The FTIR and EDS analysis data confirmed the important role of oxygen-containing surface groups, which significantly contributed to removal of heavy metals with extremely high adsorption capacities, comparable with other studies. In conclusion, due to very high adsorption capacities for metal cations, the cassava root husk-derived biochar modified with ZnO-NPs can be applied as the alternative, inexpensive, non-toxic and highly effective adsorbent in the removal of various toxic cations.

5.
Chemosphere ; 268: 129329, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33360937

RESUMEN

This study develops a method to reuse aquaculture wastewater and sediment from a catfish pond in order to increase agricultural productivity and protect the environment. Material flow analysis (MFA) is a central concept of this study that involves collecting catfish pond wastewater (CPW) and reusing it to irrigate five water spinach (Ipomoea aquatic) ponds before discharging it into a river. Typically, catfish pond sediment (CPS) was collected and composted to produce organic fertilizer for cornfields. The results revealed that pollutant removal efficiency of wastewater from CPW (by using water spinach) were total organic carbon (TOC) = 38.78%, nitrogen (N) = 27.07%, phosphorous (P) = 58.42%, and potassium (K) = 28.64%. By adding 20 tons of CPS compost per hectare of the cornfield, the corn yield boosted 15% compared to the control field. In addition, the water spinach grew and developed well in the medium of wastewater from the fish pond. Altogether, the results illustrate that catfish pond wastewater and sediment can act as organic fertilizers for crops meanwhile reduce environmental pollution from its reuse.


Asunto(s)
Ipomoea , Aguas Residuales , Animales , Acuicultura , Estanques , Aguas Residuales/análisis , Zea mays
6.
Environ Pollut ; 265(Pt B): 114853, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32480006

RESUMEN

This study proposes an integrated cattle breeding and cultivation system that provides zero emission and sustainable livelihood for the community in rural areas. The proposed integrated farming system improves agricultural productivity and environmental and sanitation conditions, minimizes the amount of waste, and increases the family income up to 41.55%. Several waste types can be recycled and transformed into valuable products, such as energy for cooking, organic fertilizer for crops, and cattle feed for breeding. Wastewater effluent from the biogas tank can be treated by biochar and results show that it then meets the standards for irrigation purposes. Also, the waste flow from cattle breeding supplies enough nutrients to cultivate plants, and the plants grown supply are adequate food for the 30 cows living on the farm. This research shows that the use of an integrated farming system could achieve zero-emission goal. Thereby, it provides a sustainable livelihood for cattle breeding family farms. The proposed integrated cattle breeding and cultivation system improves agricultural productivity, environmental and increases the farmer income up to 41.55%.


Asunto(s)
Agricultura , Cruzamiento , Animales , Bovinos , Industria Lechera , Granjas , Femenino , Fertilizantes , Vietnam
7.
Environ Sci Pollut Res Int ; 27(20): 24650-24658, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31372952

RESUMEN

Hydrogen cyanide (HCN) is volatile and highly toxic with acute and chronic effects on humans. Gaseous HCN enters the atmosphere from natural processes or industrial activities, which lead to human exposure. Effective intervention in cases of HCN inhalation requires an efficient diagnostic tool. The existing physiologically based pharmacokinetic (PBPK) model for HCN cannot clearly simulate continuous HCN inhalation or predict HCN levels in inhaled air. The current study presents a PBPK model for continuous inhalation of HCN, called Human Continuous Cyanide Inhalation Predictor (HCCIP). Since existing data on pharmacokinetics of HCN inhalation are limited, HCCIP utilizes extensive data from the current authors' PBPK model on cyanide ingestion. The structure of HCCIP comprises the lungs, kidneys, liver, and slowly perfused tissue. In both the human body and in exhaled air, HCCIP features the ability to predict concentration-time courses of cyanide. Moreover, HCCIP can predict HCN concentration in inhaled air from known blood cyanide levels. After completion, the results of HCCIP were validated against preexisting published datasets. The simulation results agreed with these datasets, validating the model. The HCCIP model is an effective tool for assessing risk from continuous HCN inhalation, and HCCIP extends the capabilities of air dispersion modeling, such as AERMOD or CALPUFF, to assess HCN risk from specific release sources.


Asunto(s)
Cianuros , Cianuro de Hidrógeno , Administración por Inhalación , Espiración , Humanos , Exposición por Inhalación , Pulmón , Modelos Biológicos
8.
J Environ Manage ; 249: 109357, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31401446

RESUMEN

This study assessed the effectiveness of the current cyanide management practice of a large gold mine as a case study of Thailand's cyanide-contaminated mine waste management policy. Most gold mines worldwide use cyanide to extract gold from ore, and various cyanide compounds, including hydrogen cyanide (HCN), are then discharged into a tailing storage facility (TSF). From there, HCN volatizes into the air, and people inhaling HCN can experience chronic, acute, or even fatal effects. Although recently only two gold mines operated in Thailand, many new gold mines are under consideration for future. Unfortunately, no specific government regulations for cyanide-contaminated mine waste management exist besides guidelines from environmental impact assessments prepared by the gold mines themselves. This raises concerns that cyanide volatilization may threaten public health. The current study addresses the need for vital scientific analysis by applying AERMOD modeling to simulate HCN dispersion from the gold mine studied, under 20 scenarios of various pH levels and cyanide concentrations. The results show that the HCN emissions cause acute effects to the public under most scenarios. Chronic effects also occur in scenarios of low pH or high cyanide concentration; however, no simulation showed fatalities. This study determined an acceptable cyanide concentration in TSF that is low enough to theoretically avoid dangerous public exposure. Results show that the mine's recent cyanide discharge limit of 20 mg/l, set by the mine itself, is not safe. To limit dangers from the mine's HCN emissions, cyanide levels in tailings must be carefully calculated and regulated using the HCN dispersion model, being sure to account for pH.


Asunto(s)
Oro , Cianuro de Hidrógeno , Cianuros , Monitoreo del Ambiente , Hidrógeno , Minería , Tailandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA