Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105733, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336291

RESUMEN

RNA Binding Proteins regulate, in part, alternative pre-mRNA splicing and, in turn, gene expression patterns. Polypyrimidine tract binding proteins PTBP1 and PTBP2 are paralogous RNA binding proteins sharing 74% amino acid sequence identity. Both proteins contain four structured RNA-recognition motifs (RRMs) connected by linker regions and an N-terminal region. Despite their similarities, the paralogs have distinct tissue-specific expression patterns and can regulate discrete sets of target exons. How two highly structurally similar proteins can exert different splicing outcomes is not well understood. Previous studies revealed that PTBP2 is post-translationally phosphorylated in the unstructured N-terminal, Linker 1, and Linker 2 regions that share less sequence identity with PTBP1 signifying a role for these regions in dictating the paralog's distinct splicing activities. To this end, we conducted bioinformatics analysis to determine the evolutionary conservation of RRMs versus linker regions in PTBP1 and PTBP2 across species. To determine the role of PTBP2 unstructured regions in splicing activity, we created hybrid PTBP1-PTBP2 constructs that had counterpart PTBP1 regions swapped to an otherwise PTBP2 protein and assayed on differentially regulated exons. We also conducted molecular dynamics studies to investigate how negative charges introduced by phosphorylation in PTBP2 unstructured regions can alter their physical properties. Collectively, results from our studies reveal an important role for PTBP2 unstructured regions and suggest a role for phosphorylation in the differential splicing activities of the paralogs on certain regulated exons.


Asunto(s)
Empalme Alternativo , Proteína de Unión al Tracto de Polipirimidina , Vertebrados , Animales , Humanos , Ratones , Ratas , Exones/genética , Ribonucleoproteínas Nucleares Heterogéneas/química , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Fosforilación , Proteína de Unión al Tracto de Polipirimidina/química , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Especificidad de la Especie , Vertebrados/genética , Pollos/genética
2.
Bioorg Med Chem Lett ; 97: 129570, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036273

RESUMEN

Small molecule activators of protein kinase C (PKC) have traditionally been classified as either tumor promoters or suppressors. Although bryostatin 1 has well established anti-cancer activity, most natural products that target the PKC regulator domain exhibit tumor promotion properties. In this study, we examine a focused library of indolactam analogues in cell-based assays to establish the structural features of the scaffold that enhance bryostatin 1-like activity. These systematic biological assessments identified specific indole substitution patterns that impart diminished tumor promotion behavior in vitro for indolactam analogues, while still maintaining nanomolar potency for PKC.


Asunto(s)
Lactamas , Neoplasias , Proteína Quinasa C , Humanos , Brioestatinas/farmacología , Brioestatinas/química , Brioestatinas/metabolismo , Lactonas , Proteína Quinasa C/metabolismo , Acetato de Tetradecanoilforbol , Lactamas/química , Lactamas/farmacología
3.
ACS Med Chem Lett ; 13(7): 1036-1042, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35859880

RESUMEN

The Gli transcription factors within the Hedgehog (Hh) signaling pathway play essential roles in human development. However, the reactivation of Gli proteins in adult tissue is tumorigenic and drives the progression of several cancers, including the majority of basal cell carcinomas. Here we describe a novel set of indolactam dipeptides that target protein kinase C (PKC), exploiting the unique capacity of PKC isozymes to act as regulators of Gli. We devised an efficient synthetic route for the indolactam-based natural product (-)-pendolmycin and a series of analogues, and we evaluated these analogues in mechanistically distinct Gli reporter assays. The lead compound from these studies, N-hexylindolactam V, exhibits superior Gli suppression relative to clinical inhibitors and blocks the growth of Gli-dependent basal cell carcinoma cells. More broadly, our structure-activity studies provide inroads for the development of novel Gli antagonists and new avenues for combating Gli-driven cancers.

4.
ACS Chem Biol ; 15(6): 1321-1327, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32479053

RESUMEN

Aberrations in the Hedgehog (Hh) signaling pathway are responsible for a broad range of human cancers, yet only a subset rely on the activity of the clinical target, Smoothened (Smo). Emerging cases of cancers that are insensitive to Smo-targeting drugs demand new therapeutic targets and agents for inhibition. As such, we sought to pursue a recently discovered connection between the Hedgehog pathway transcription factors, the glioma-associated oncogene homologues (Glis), and protein kinase C (PKC) isozymes. Here, we report our assessment of a structurally diverse library of PKC effectors for their influence on Gli function. Using cell lines that employ distinct mechanisms of Gli activation up- and downstream of Smo, we identify a PKC effector that acts as a nanomolar Gli antagonist downstream of Smo through a mitogen-activated protein kinase kinase (MEK)-independent mechanism. This agent provides a unique tool to illuminate crosstalk between PKC isozymes and Hh signaling and new opportunities for therapeutic intervention in Hh pathway-dependent cancers.


Asunto(s)
Proteína Quinasa C/metabolismo , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Línea Celular , Descubrimiento de Drogas , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Bibliotecas de Moléculas Pequeñas/química
5.
Biochim Biophys Acta ; 1841(4): 630-44, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24406904

RESUMEN

Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome.


Asunto(s)
Proteínas Mitocondriales/genética , Respiración/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquinona/biosíntesis , Suplementos Dietéticos , Regulación Fúngica de la Expresión Génica , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/química , Ubiquinona/genética , Ubiquinona/metabolismo
6.
Infect Immun ; 80(1): 143-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22083705

RESUMEN

The enteric protozoan parasite Entamoeba histolytica is the cause of potentially fatal amebic colitis and liver abscesses. E. histolytica trophozoites colonize the colon, where they induce inflammation, penetrate the mucosa, and disrupt the host immune system. The early establishment of E. histolytica in the colon occurs in the presence of antimicrobial human (LL-37) and murine (CRAMP [cathelin-related antimicrobial peptide]) cathelicidins, essential components of the mammalian innate defense system in the intestine. Studying this early step in the pathogenesis of amebic colitis, we demonstrate that E. histolytica trophozoites or their released proteinases, including cysteine proteinase 1 (EhCP1), induce intestinal cathelicidins in human intestinal epithelial cell lines and in a mouse model of amebic colitis. Despite induction, E. histolytica trophozoites were found to be resistant to killing by these antimicrobial peptides, and LL-37 and CRAMP were rapidly cleaved by released amebic cysteine proteases. The cathelicidin fragments however, did maintain their antimicrobial activity against bacteria. Degradation of intestinal cathelicidins is a novel function of E. histolytica cysteine proteinases in the evasion of the innate immune system in the bowel. Thus, early intestinal epithelial colonization of invasive trophozoites involves a complex interplay in which the ultimate outcome of infection depends in part on the balance between degradation of cathelicidins by amebic released cysteine proteinases and upregulation of proinflammatory mediators which trigger the inflammatory response.


Asunto(s)
Catelicidinas/biosíntesis , Catelicidinas/inmunología , Entamoeba histolytica/inmunología , Entamoeba histolytica/patogenicidad , Evasión Inmune , Animales , Catelicidinas/metabolismo , Línea Celular , Supervivencia Celular , Proteasas de Cisteína/metabolismo , Disentería Amebiana/inmunología , Disentería Amebiana/parasitología , Disentería Amebiana/patología , Entamoeba histolytica/enzimología , Células Epiteliales/inmunología , Células Epiteliales/parasitología , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Proteolisis
7.
Biochim Biophys Acta ; 1811(5): 348-60, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21296186

RESUMEN

Coenzyme Q (ubiquinone or Q) is a lipid electron and proton carrier in the electron transport chain. In yeast Saccharomyces cerevisiae eleven genes, designated COQ1 through COQ9, YAH1 and ARH1, have been identified as being required for Q biosynthesis. One of these genes, COQ8 (ABC1), encodes an atypical protein kinase, containing six (I, II, III, VIB, VII, and VIII) of the twelve motifs characteristically present in canonical protein kinases. Here we characterize seven distinct Q-less coq8 yeast mutants and show that unlike the coq8 null mutant, each maintained normal steady-state levels of the Coq8 polypeptide. The phosphorylation states of Coq polypeptides were determined with two-dimensional gel analyses. Coq3p, Coq5p, and Coq7p were phosphorylated in a Coq8p-dependent manner. Expression of a human homolog of Coq8p, ADCK3(CABC1) bearing an amino-terminal yeast mitochondrial leader sequence, rescued growth of yeast coq8 mutants on medium containing a nonfermentable carbon source and partially restored biosynthesis of Q(6). The phosphorylation state of several of the yeast Coq polypeptides was also rescued, indicating a profound conservation of yeast Coq8p and human ADCK3 protein kinase function in Q biosynthesis.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Péptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquinona/biosíntesis , Secuencia de Aminoácidos , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Mutación , Péptidos/genética , Fosforilación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Ubiquinona/genética , Ubiquinona/metabolismo
8.
Mitochondrion ; 7 Suppl: S62-71, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17482885

RESUMEN

Coenzyme Q (Q) functions in the mitochondrial respiratory chain and serves as a lipophilic antioxidant. There is increasing interest in the use of Q as a nutritional supplement. Although, the physiological significance of Q is extensively investigated in eukaryotes, ranging from yeast to human, the eukaryotic Q biosynthesis pathway is best characterized in the budding yeast Saccharomyces cerevisiae. At least ten genes (COQ1-COQ10) have been shown to be required for Q biosynthesis and function in respiration. This review highlights recent knowledge about the endogenous synthesis of Q in eukaryotes, with emphasis on S. cerevisiae as a model system.


Asunto(s)
Ubiquinona/biosíntesis , Ubiquinona/química , Animales , Antioxidantes/metabolismo , Caenorhabditis elegans/metabolismo , Carbono/química , Células Eucariotas/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Lípidos/química , Mitocondrias/metabolismo , Modelos Biológicos , Modelos Químicos , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Ubiquinona/metabolismo
9.
Arch Biochem Biophys ; 463(1): 19-26, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17391640

RESUMEN

Coenzyme Q (Q) is a redox active lipid that is an essential component of the electron transport chain. Here, we show that steady state levels of Coq3, Coq4, Coq6, Coq7 and Coq9 polypeptides in yeast mitochondria are dependent on the expression of each of the other COQ genes. Submitochondrial localization studies indicate Coq9p is a peripheral membrane protein on the matrix side of the mitochondrial inner membrane. To investigate whether Coq9p is a component of a complex of Q-biosynthetic proteins, the native molecular mass of Coq9p was determined by Blue Native-PAGE. Coq9p was found to co-migrate with Coq3p and Coq4p at a molecular mass of approximately 1 MDa. A direct physical interaction was shown by the immunoprecipitation of HA-tagged Coq9 polypeptide with Coq4p, Coq5p, Coq6p and Coq7p. These findings, together with other work identifying Coq3p and Coq4p interactions, identify at least six Coq polypeptides in a multi-subunit Q biosynthetic complex.


Asunto(s)
Proteínas Mitocondriales/química , Complejos Multienzimáticos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Ubiquinona/biosíntesis , Electroforesis en Gel de Poliacrilamida , Membranas Mitocondriales/química , Saccharomyces cerevisiae/genética , Ubiquinona/química
10.
J Biol Chem ; 281(24): 16401-9, 2006 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-16624818

RESUMEN

Coenzyme Q (ubiquinone or Q) functions in the respiratory electron transport chain and serves as a lipophilic antioxidant. In the budding yeast Saccharomyces cerevisiae, Q biosynthesis requires nine Coq proteins (Coq1-Coq9). Previous work suggests both an enzymatic activity and a structural role for the yeast Coq7 protein. To define the functional roles of yeast Coq7p we test whether Escherichia coli ubiF can functionally substitute for yeast COQ7. The ubiF gene encodes a flavin-dependent monooxygenase that shares no homology to the Coq7 protein and is required for the final monooxygenase step of Q biosynthesis in E. coli. The ubiF gene expressed at low copy restores growth of a coq7 point mutant (E194K) on medium containing a non-fermentable carbon source, but fails to rescue a coq7 null mutant. However, expression of ubiF from a multicopy vector restores growth and Q synthesis for both mutants, although with a higher efficiency in the point mutant. We attribute the more efficient rescue of the coq7 point mutant to higher steady state levels of the Coq3, Coq4, and Coq6 proteins and to the presence of demethoxyubiquinone, the substrate of UbiF. Coq7p co-migrates with the Coq3 and Coq4 polypeptides as a high molecular mass complex. Here we show that addition of Q to the growth media also stabilizes the Coq3 and Coq4 polypeptides in the coq7 null mutant. The data suggest that Coq7p, and the lipid quinones (demethoxyubiquinone and Q) function to stabilize other Coq polypeptides.


Asunto(s)
Proteínas de Escherichia coli/genética , Oxigenasas de Función Mixta/genética , Mutación , Saccharomyces cerevisiae/genética , Ubiquinona/química , Secuencia de Aminoácidos , Electroquímica , Prueba de Complementación Genética , Vectores Genéticos , Lípidos , Mitocondrias/metabolismo , Modelos Químicos , Datos de Secuencia Molecular , Mutación Puntual , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...