Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 483, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212324

RESUMEN

Future projections of precipitation are uncertain, hampering effective climate adaptation strategies globally. Our understanding of changes across multiple climate model simulations under a warmer climate is limited by this lack of coherence across models. Here, we address this challenge introducing an approach that detects agreement in drier and wetter conditions by evaluating continuous 120-year time-series with trends, across 146 Global Climate Model (GCM) runs and two elevated greenhouse gas (GHG) emissions scenarios. We show the hotspots of future drier and wetter conditions, including regions already experiencing water scarcity or excess. These patterns are projected to impact a significant portion of the global population, with approximately 3 billion people (38% of the world's current population) affected under an intermediate emissions scenario and 5 billion people (66% of the world population) under a high emissions scenario by the century's end (or 35-61% using projections of future population). We undertake a country- and state-level analysis quantifying the population exposed to significant changes in precipitation regimes, offering a robust framework for assessing multiple climate projections.

2.
J Environ Manage ; 345: 118738, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37549638

RESUMEN

Climate change is predicted to significantly alter hydrological cycles across the world, affecting runoff, streamflow, and pollutant loads from diffuse sources. The objectives of this study were to examine the impacts of climate change on streamflow, total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) loads in the subtropical Logan-Albert catchment, Queensland, Australia. We calibrated the Soil Water Assessment Tool (SWAT) against event monitoring data in the Logan and Albert rivers, respectively. Hydrological and water quality effects of an ensemble of 11 dynamically downscaled high-resolution climate models were assessed with SWAT under high (Representative Concentration Pathway 8.5 - RCP8.5) and intermediate (RCP4.5) emission scenarios. Streamflow decreased most in winter and spring and decreased least in summer. This followed the predicted seasonal changes for precipitation, although decreases tended to be amplified due to increasing evaporative loss. TSS, TN, and TP loads showed a similar pattern to streamflow, with the largest decreases predicted for the dry season under RCP8.5 by the 2080s. Annual TSS load decreased by 34.3 and 54.2%, TN load decreased by 29.8 and 30.5%, and TP load by 24.9 and 4.4% for the Logan and Albert sites, respectively. The results of this study indicate that for subtropical river-estuary systems, climate warming may lead to lower streamflow and contaminant loads, reduced flushing, and greater relative importance of point source loads in urbanising catchments.


Asunto(s)
Cambio Climático , Calidad del Agua , Suelo , Australia , Ríos , Fósforo/análisis , Nitrógeno/análisis , Nutrientes , Monitoreo del Ambiente/métodos
4.
Sci Total Environ ; 742: 140521, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32721721

RESUMEN

Heatwaves are defined as unusually high temperature events that occur for at least three consecutive days with major impacts to human health, economy, agriculture and ecosystems. This paper investigates: 1) changes in heatwave characteristics such as peak temperature, number of events, frequency and duration over a past 67-year period in Australia; 2) projected changes in heatwave characteristics for this century in Queensland, northeast Australia; and 3) the avoided heatwave impacts of limiting global warming by 1.5 °C, 2.0 °C and 3.0 °C. The results reveal that heatwaves have increased in intensity, frequency and duration across Australia over the past 67 years, such intensification was particularly higher on recent decades. Downscaled future climate projections for Queensland suggest that heatwaves will further intensify over the current century. The projections also highlight that distinct climatic regions within Queensland may have different heatwave responses under global warming, where tropical and equatorial heatwaves appear to be more sensitive to elevated atmospheric CO2 concentrations than temperate and arid regions. The results offer new insights to support climate adaptation and mitigation at regional scales. These findings are already being used by health and emergency services to inform the development of statewide policies to mitigate heatwave impacts.

5.
Environ Monit Assess ; 187(1): 4145, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25471621

RESUMEN

The Cerrado is a biome in Brazil that is experiencing the most rapid loss in natural vegetation. The objective of this study was to analyze the changes in the spectral response in the red, near infrared (NIR), middle infrared (MIR), and normalized difference vegetation index (NDVI) when native vegetation in the Cerrado is deforested. The test sites were regions of the Cerrado located in the states of Bahia, Minas Gerais, and Mato Grosso. For each region, a pair of Landsat Thematic Mapper (TM) scenes from 2008 (before deforestation) and 2009 (after deforestation) was compared. A set of 1,380 samples of deforested polygons and an equal number of samples of native vegetation have their spectral properties statistically analyzed. The accuracy of deforestation detections was also evaluated using high spatial resolution imagery. Results showed that the spectral data of deforested areas and their corresponding native vegetation were statistically different. The red band showed the highest difference between the reflectance data from deforested areas and native vegetation, while the NIR band showed the lowest difference. A consistent pattern of spectral change when native vegetation in the Cerrado is deforested was identified regardless of the location in the biome. The overall accuracy of deforestation detections was 97.75%. Considering both the marked pattern of spectral changes and the high deforestation detection accuracy, this study suggests that deforestation in Cerrado can be accurately monitored, but a strong seasonal and spatial variability of spectral changes might be expected.


Asunto(s)
Conservación de los Recursos Naturales , Monitoreo del Ambiente , Pradera , Brasil , Tecnología de Sensores Remotos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA