Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38585878

RESUMEN

Antisense therapeutics such as splice-modulating antisense oligonucleotides (ASOs) are promising tools to treat diseases caused by splice-altering intronic variants. However, their testing in animal models is hampered by the generally poor sequence conservation of the intervening sequences between human and other species. Here we aimed to model in the mouse a recurrent, deep-intronic, splice-activating, COL6A1 variant, associated with a severe form of Collagen VI-related muscular dystrophies (COL6-RDs), for the purpose of testing human-ready antisense therapeutics in vivo. The variant, c.930+189C>T, creates a donor splice site and inserts a 72-nt-long pseudoexon, which, when translated, acts in a dominant-negative manner, but which can be skipped with ASOs. We created a unique humanized mouse allele (designated as "h"), in which a 1.9 kb of the mouse genomic region encoding the amino-terminus (N-) of the triple helical (TH) domain of collagen a1(VI) was swapped for the human orthologous sequence. In addition, we also created an allele that carries the c.930+189C>T variant on the same humanized knock-in sequence (designated as "h+189T"). We show that in both models, the human exons are spliced seamlessly with the mouse exons to generate a chimeric mouse-human collagen a1(VI) protein. In homozygous Col6a1 h+189T/h+189T mice, the pseudoexon is expressed at levels comparable to those observed in heterozygous patients' muscle biopsies. While Col6a1h/h mice do not show any phenotype compared to wildtype animals, Col6a1 h/h+189T and Col6a1 h+189T/h+189T mice have smaller muscle masses and display grip strength deficits detectable as early as 4 weeks of age. The pathogenic h+189T humanized knock-in mouse allele thus recapitulates the pathogenic splicing defects seen in patients' biopsies and allows testing of human-ready precision antisense therapeutics aimed at skipping the pseudoexon. Given that the COL6A1 N-TH region is a hot-spot for COL6-RD variants, the humanized knock-in mouse model can be utilized as a template to introduce other COL6A1 pathogenic variants. This unique humanized mouse model thus represents a valuable tool for the development of antisense therapeutics for COL6-RDs.

2.
Prog Neurobiol ; 213: 102264, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35283239

RESUMEN

The complexity of astrocyte morphology and syncytial coupling through gap junctions are crucial for astrocyte function in the brain. However, the ultrastructural details of astrocyte arborization and interactions between neighboring astrocytes remain unknown. While a prevailing view is that synapses selectively contact peripheral astrocyte processes, the precise spatial-location selectivity of synapses abutting astrocytes is unresolved. Additionally, knowing the location and quantity of vesicles and mitochondria are prerequisites to answer two emerging questions - whether astrocytes have a signaling role within the brain and whether astrocytes are highly metabolically active. Here, we provided structural context for these questions by tracing and 3D reconstructing three neighboring astrocytes using serial block-face scanning electron microscopy. Our reconstructions reveal a spongiform astrocytic morphology resulting from the abundance of reflexive and leaflet processes. At the interfaces, varying sizes of astrocyte-astrocyte contacts were identified. Inside an astrocyte domain, synapses contact the entire astrocyte, and synapse-astrocyte contacts increase from soma to terminal leaflets. In contrast to densely packed vesicles at synaptic boutons, vesicle-like structures were scant within astrocytes. Lastly, astrocytes contain dense mitochondrial networks with a mitochondrial volume ratio similar to that of neurites. Together, these ultrastructural details should expand our understanding of functional astrocyte-astrocyte and astrocyte-neuron interactions.


Asunto(s)
Astrocitos , Sinapsis , Astrocitos/metabolismo , Encéfalo , Humanos , Mitocondrias , Neuronas/fisiología , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...