Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 9(396)2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28659436

RESUMEN

Emerging viral infections are difficult to control because heterogeneous members periodically cycle in and out of humans and zoonotic hosts, complicating the development of specific antiviral therapies and vaccines. Coronaviruses (CoVs) have a proclivity to spread rapidly into new host species causing severe disease. Severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) successively emerged, causing severe epidemic respiratory disease in immunologically naïve human populations throughout the globe. Broad-spectrum therapies capable of inhibiting CoV infections would address an immediate unmet medical need and could be invaluable in the treatment of emerging and endemic CoV infections. We show that a nucleotide prodrug, GS-5734, currently in clinical development for treatment of Ebola virus disease, can inhibit SARS-CoV and MERS-CoV replication in multiple in vitro systems, including primary human airway epithelial cell cultures with submicromolar IC50 values. GS-5734 was also effective against bat CoVs, prepandemic bat CoVs, and circulating contemporary human CoV in primary human lung cells, thus demonstrating broad-spectrum anti-CoV activity. In a mouse model of SARS-CoV pathogenesis, prophylactic and early therapeutic administration of GS-5734 significantly reduced lung viral load and improved clinical signs of disease as well as respiratory function. These data provide substantive evidence that GS-5734 may prove effective against endemic MERS-CoV in the Middle East, circulating human CoV, and, possibly most importantly, emerging CoV of the future.


Asunto(s)
Alanina/análogos & derivados , Antivirales/farmacología , Coronavirus/efectos de los fármacos , Epidemias , Ribonucleótidos/farmacología , Zoonosis/epidemiología , Zoonosis/virología , Adenosina Monofosfato/análogos & derivados , Alanina/metabolismo , Alanina/farmacocinética , Alanina/farmacología , Alanina/toxicidad , Animales , Antivirales/metabolismo , Antivirales/farmacocinética , Antivirales/toxicidad , Callithrix , Línea Celular , Células Epiteliales/virología , Humanos , Pulmón/patología , Ratones , Ribonucleótidos/metabolismo , Ribonucleótidos/farmacocinética , Ribonucleótidos/toxicidad , Replicación Viral/efectos de los fármacos , Zoonosis/prevención & control
2.
Mol Pharm ; 5(2): 294-315, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18254597

RESUMEN

The Nepsilon-fumaroylated diketopiperazine of L-Lys (FDKP, 1) self-assembles into microparticles that can be used for pulmonary drug delivery. When these particles are formulated with insulin, the resultant powder (Technosphere Insulin) provides a novel prandial insulin therapy. To better understand the self-assembly of 1, a series of model compounds were synthesized that allowed for the determination of the preferred intramolecular hydrogen-bonding pattern of FDKP. Variable-temperature NMR (CDCl3) and FTIR studies of acyclic diamides (3-7a) and diketopiperazine models (7b- 9d) revealed the preference of a 10-membered hydrogen bond between one of the diketopiperazine's amido NH and the appended fumaramido-carbonyl (assigned as a "type B" H bond). Molecular modeling studies identified a low energy conformer in the architecture of 1, which contains two Nepsilon-fumaroylated lysine side chains appended to the diketopiperazine core. The lowest energy form involved a "cooperative" hydrogen bond motif which involved only one of the diketopiperazine amides and had one "arm" involved in a type B motif and the other in a "type A" hydrogen bond (i.e., the fumaramidyl NH H-bonding to the diketopiperazine amide carbonyl). This cooperative hydrogen bond scenario orients the appended fumaryl groups into a distinctive 90 degrees arrangement and is likely involved in its self-assembly into microparticles.


Asunto(s)
Fumaratos/química , Piperazinas/química , Enlace de Hidrógeno , Lisina/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...